Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $224$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,17)(2,3,18)(5,11,8,14,9,15)(6,12,7,13,10,16), (1,16,8,17,12,5,4,13,9)(2,15,7,18,11,6,3,14,10) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: $S_4$
Degree 9: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Low degree siblings
9T29, 12T175, 18T219, 18T220, 18T223Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,17, 4)( 2,18, 3)( 5, 8, 9)( 6, 7,10)(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 9, 8)( 6,10, 7)(11,15,14)(12,16,13)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $(11,15,14)(12,16,13)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $12$ | $3$ | $( 1,17, 4)( 2,18, 3)( 5, 8, 9)( 6, 7,10)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)$ |
| $ 3, 3, 2, 2, 2, 2, 2, 2 $ | $54$ | $6$ | $( 1,17, 4)( 2,18, 3)( 5, 7)( 6, 8)( 9,10)(11,16)(12,15)(13,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $72$ | $3$ | $( 1, 7,16)( 2, 8,15)( 3, 5,14)( 4, 6,13)( 9,11,18)(10,12,17)$ |
| $ 9, 9 $ | $72$ | $9$ | $( 1, 7,13, 4, 6,12,17,10,16)( 2, 8,14, 3, 5,11,18, 9,15)$ |
| $ 9, 9 $ | $72$ | $9$ | $( 1, 7,12,17,10,13, 4, 6,16)( 2, 8,11,18, 9,14, 3, 5,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 5,14)( 6,13)( 7,16)( 8,15)( 9,11)(10,12)$ |
| $ 6, 6, 3, 3 $ | $36$ | $6$ | $( 1,17, 4)( 2,18, 3)( 5,15, 9,14, 8,11)( 6,16,10,13, 7,12)$ |
| $ 6, 6, 3, 3 $ | $36$ | $6$ | $( 1, 4,17)( 2, 3,18)( 5,11, 8,14, 9,15)( 6,12, 7,13,10,16)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $36$ | $6$ | $( 5,11, 9,15, 8,14)( 6,12,10,16, 7,13)$ |
| $ 3, 3, 2, 2, 2, 2, 2, 2 $ | $18$ | $6$ | $( 1, 4,17)( 2, 3,18)( 5,15)( 6,16)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 3, 3, 2, 2, 2, 2, 2, 2 $ | $18$ | $6$ | $( 1,17, 4)( 2,18, 3)( 5,11)( 6,12)( 7,13)( 8,14)( 9,15)(10,16)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $162$ | $4$ | $( 1, 3)( 2, 4)( 5,11, 7,13)( 6,12, 8,14)( 9,15,10,16)(17,18)$ |
Group invariants
| Order: | $648=2^{3} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [648, 704] |
| Character table: |
2 3 1 1 2 1 3 2 . . . 2 1 1 1 2 2 2
3 4 4 4 3 3 1 1 2 2 2 2 2 2 2 2 2 .
1a 3a 3b 3c 3d 2a 6a 3e 9a 9b 2b 6b 6c 6d 6e 6f 4a
2P 1a 3b 3a 3c 3d 1a 3c 3e 9b 9a 1a 3b 3a 3d 3c 3c 2a
3P 1a 1a 1a 1a 1a 2a 2a 1a 3b 3a 2b 2b 2b 2b 2b 2b 4a
5P 1a 3b 3a 3c 3d 2a 6a 3e 9b 9a 2b 6c 6b 6d 6f 6e 4a
7P 1a 3a 3b 3c 3d 2a 6a 3e 9a 9b 2b 6b 6c 6d 6e 6f 4a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
X.3 2 2 2 2 2 2 2 -1 -1 -1 . . . . . . .
X.4 3 3 3 3 3 -1 -1 . . . 1 1 1 1 1 1 -1
X.5 3 3 3 3 3 -1 -1 . . . -1 -1 -1 -1 -1 -1 1
X.6 4 A /A -2 1 . . 1 C /C -2 /C C 1 E /E .
X.7 4 /A A -2 1 . . 1 /C C -2 C /C 1 /E E .
X.8 4 A /A -2 1 . . 1 C /C 2 -/C -C -1 -E -/E .
X.9 4 /A A -2 1 . . 1 /C C 2 -C -/C -1 -/E -E .
X.10 6 -3 -3 3 . 2 -1 . . . 2 -1 -1 2 -1 -1 .
X.11 6 -3 -3 3 . 2 -1 . . . -2 1 1 -2 1 1 .
X.12 6 -3 -3 3 . -2 1 . . . . D -D . -D D .
X.13 6 -3 -3 3 . -2 1 . . . . -D D . D -D .
X.14 8 B /B -4 2 . . -1 -C -/C . . . . . . .
X.15 8 /B B -4 2 . . -1 -/C -C . . . . . . .
X.16 12 3 3 . -3 . . . . . -2 1 1 1 -2 -2 .
X.17 12 3 3 . -3 . . . . . 2 -1 -1 -1 2 2 .
A = -E(3)+2*E(3)^2
= (-1-3*Sqrt(-3))/2 = -2-3b3
B = -2*E(3)+4*E(3)^2
= -1-3*Sqrt(-3) = -1-3i3
C = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
D = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
E = -2*E(3)^2
= 1+Sqrt(-3) = 1+i3
|