Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $217$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,4)(5,13)(6,14)(7,15,9,11)(8,16,10,12)(17,18), (1,10,15,3,8,11,17,6,13)(2,9,16,4,7,12,18,5,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $S_3$
Degree 9: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Low degree siblings
9T30, 12T177 x 2, 12T178, 18T218, 18T221, 18T222Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 7, 9)( 6, 8,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $12$ | $3$ | $( 5, 7, 9)( 6, 8,10)(11,13,15)(12,14,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 3,17)( 2, 4,18)( 5, 7, 9)( 6, 8,10)(11,13,15)(12,14,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $( 7, 9)( 8,10)(13,15)(14,16)$ |
| $ 3, 3, 2, 2, 2, 2, 1, 1, 1, 1 $ | $54$ | $6$ | $( 1, 3,17)( 2, 4,18)( 7, 9)( 8,10)(13,15)(14,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $72$ | $3$ | $( 1,13, 6)( 2,14, 5)( 3,11, 8)( 4,12, 7)( 9,18,16)(10,17,15)$ |
| $ 9, 9 $ | $72$ | $9$ | $( 1,13, 8, 3,11,10,17,15, 6)( 2,14, 7, 4,12, 9,18,16, 5)$ |
| $ 9, 9 $ | $72$ | $9$ | $( 1,13,10,17,15, 8, 3,11, 6)( 2,14, 9,18,16, 7, 4,12, 5)$ |
| $ 4, 4, 2, 2, 2, 2, 2 $ | $54$ | $4$ | $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15, 9,11)( 8,16,10,12)(17,18)$ |
| $ 6, 4, 4, 2, 2 $ | $54$ | $12$ | $( 1, 4,17, 2, 3,18)( 5,13)( 6,14)( 7,15, 9,11)( 8,16,10,12)$ |
| $ 6, 4, 4, 2, 2 $ | $54$ | $12$ | $( 1,18, 3, 2,17, 4)( 5,13)( 6,14)( 7,15, 9,11)( 8,16,10,12)$ |
| $ 6, 6, 2, 2, 2 $ | $108$ | $6$ | $( 1, 2)( 3,18)( 4,17)( 5,15, 9,11, 7,13)( 6,16,10,12, 8,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $54$ | $2$ | $( 1, 2)( 3,18)( 4,17)( 5,15)( 6,16)( 7,13)( 8,14)( 9,11)(10,12)$ |
Group invariants
| Order: | $648=2^{3} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [648, 703] |
| Character table: |
2 3 2 1 . 3 2 . . . 2 2 2 1 2
3 4 3 3 4 1 1 2 2 2 1 1 1 1 1
1a 3a 3b 3c 2a 6a 3d 9a 9b 4a 12a 12b 6b 2b
2P 1a 3a 3b 3c 1a 3a 3d 9a 9b 2a 6a 6a 3b 1a
3P 1a 1a 1a 1a 2a 2a 1a 3c 3c 4a 4a 4a 2b 2b
5P 1a 3a 3b 3c 2a 6a 3d 9a 9b 4a 12b 12a 6b 2b
7P 1a 3a 3b 3c 2a 6a 3d 9a 9b 4a 12b 12a 6b 2b
11P 1a 3a 3b 3c 2a 6a 3d 9a 9b 4a 12a 12b 6b 2b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
X.3 2 2 2 2 2 2 -1 -1 -1 . . . . .
X.4 3 3 3 3 -1 -1 . . . -1 -1 -1 1 1
X.5 3 3 3 3 -1 -1 . . . 1 1 1 -1 -1
X.6 6 3 . -3 2 -1 . . . -2 1 1 . .
X.7 6 3 . -3 2 -1 . . . 2 -1 -1 . .
X.8 6 3 . -3 -2 1 . . . . A -A . .
X.9 6 3 . -3 -2 1 . . . . -A A . .
X.10 8 -4 2 -1 . . 2 -1 -1 . . . . .
X.11 8 -4 2 -1 . . -1 -1 2 . . . . .
X.12 8 -4 2 -1 . . -1 2 -1 . . . . .
X.13 12 . -3 3 . . . . . . . . -1 2
X.14 12 . -3 3 . . . . . . . . 1 -2
A = -E(12)^7+E(12)^11
= Sqrt(3) = r3
|