Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $207$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,14,4,6,15,17,10,11)(2,8,13,3,5,16,18,9,12), (1,17,4)(2,18,3)(5,10)(6,9)(7,8)(11,15,14)(12,16,13) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ 24: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: $A_4\times C_2$
Degree 9: $S_3 \wr C_3 $
Low degree siblings
9T28, 12T176, 18T197 x 2, 18T198 x 2, 18T202, 18T204, 18T206Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 9, 8)( 6,10, 7)(11,14,15)(12,13,16)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 9, 8)( 6,10, 7)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $12$ | $3$ | $( 1,17, 4)( 2,18, 3)(11,15,14)(12,16,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 9)( 8,10)(17,18)$ |
| $ 3, 3, 2, 2, 2, 2, 2, 2 $ | $54$ | $6$ | $( 1,18)( 2,17)( 3, 4)( 5,10)( 6, 9)( 7, 8)(11,14,15)(12,13,16)$ |
| $ 9, 9 $ | $72$ | $9$ | $( 1, 7,14, 4, 6,15,17,10,11)( 2, 8,13, 3, 5,16,18, 9,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $36$ | $3$ | $( 1,10,11)( 2, 9,12)( 3, 8,13)( 4, 7,14)( 5,16,18)( 6,15,17)$ |
| $ 9, 9 $ | $72$ | $9$ | $( 1,14, 6,17,11, 7, 4,15,10)( 2,13, 5,18,12, 8, 3,16, 9)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $36$ | $3$ | $( 1,14,10)( 2,13, 9)( 3,16, 8)( 4,15, 7)( 5,18,12)( 6,17,11)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $(11,13)(12,14)(15,16)$ |
| $ 3, 3, 3, 3, 2, 2, 2 $ | $36$ | $6$ | $( 1, 4,17)( 2, 3,18)( 5, 9, 8)( 6,10, 7)(11,16)(12,15)(13,14)$ |
| $ 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $6$ | $( 5, 9, 8)( 6,10, 7)(11,13)(12,14)(15,16)$ |
| $ 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $6$ | $( 1,17, 4)( 2,18, 3)(11,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)(17,18)$ |
| $ 6, 6, 6 $ | $108$ | $6$ | $( 1, 7,14, 2, 8,13)( 3, 5,16,17,10,11)( 4, 6,15,18, 9,12)$ |
| $ 6, 6, 6 $ | $108$ | $6$ | $( 1,14, 8, 3,16,10)( 2,13, 7, 4,15, 9)( 5,18,12, 6,17,11)$ |
Group invariants
| Order: | $648=2^{3} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [648, 705] |
| Character table: |
2 3 . 2 1 3 2 . 1 . 1 3 1 2 2 3 1 1
3 4 4 3 3 1 1 2 2 2 2 2 2 2 2 1 1 1
1a 3a 3b 3c 2a 6a 9a 3d 9b 3e 2b 6b 6c 6d 2c 6e 6f
2P 1a 3a 3b 3c 1a 3b 9b 3e 9a 3d 1a 3c 3b 3b 1a 3e 3d
3P 1a 1a 1a 1a 2a 2a 3a 1a 3a 1a 2b 2b 2b 2b 2c 2c 2c
5P 1a 3a 3b 3c 2a 6a 9b 3e 9a 3d 2b 6b 6c 6d 2c 6f 6e
7P 1a 3a 3b 3c 2a 6a 9a 3d 9b 3e 2b 6b 6c 6d 2c 6e 6f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
X.3 1 1 1 1 1 1 A A /A /A -1 -1 -1 -1 -1 -A -/A
X.4 1 1 1 1 1 1 /A /A A A -1 -1 -1 -1 -1 -/A -A
X.5 1 1 1 1 1 1 A A /A /A 1 1 1 1 1 A /A
X.6 1 1 1 1 1 1 /A /A A A 1 1 1 1 1 /A A
X.7 3 3 3 3 -1 -1 . . . . -1 -1 -1 -1 3 . .
X.8 3 3 3 3 -1 -1 . . . . 1 1 1 1 -3 . .
X.9 6 -3 3 . 2 -1 . . . . 4 -2 1 1 . . .
X.10 6 -3 3 . 2 -1 . . . . -4 2 -1 -1 . . .
X.11 6 -3 3 . -2 1 . . . . . . -3 3 . . .
X.12 6 -3 3 . -2 1 . . . . . . 3 -3 . . .
X.13 8 -1 -4 2 . . -1 2 -1 2 . . . . . . .
X.14 8 -1 -4 2 . . -A B -/A /B . . . . . . .
X.15 8 -1 -4 2 . . -/A /B -A B . . . . . . .
X.16 12 3 . -3 . . . . . . -4 -1 2 2 . . .
X.17 12 3 . -3 . . . . . . 4 1 -2 -2 . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
|