Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $201$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11,10,18,15,6,3,13,8,2,12,9,17,16,5,4,14,7), (1,13,8,4,12,9,17,16,5,2,14,7,3,11,10,18,15,6) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ 24: $A_4\times C_2$ 324: $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 6: $C_6$
Low degree siblings
18T199 x 2, 18T205Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3,17)( 2, 4,18)( 5,10, 8)( 6, 9, 7)(11,13,16)(12,14,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,17, 3)( 2,18, 4)( 5, 8,10)( 6, 7, 9)(11,16,13)(12,15,14)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 8,10)( 6, 7, 9)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $12$ | $3$ | $( 1, 3,17)( 2, 4,18)(11,13,16)(12,14,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $( 3,17)( 4,18)( 7, 9)( 8,10)$ |
| $ 3, 3, 2, 2, 2, 2, 1, 1, 1, 1 $ | $54$ | $6$ | $( 1, 3)( 2, 4)( 5,10)( 6, 9)(11,13,16)(12,14,15)$ |
| $ 9, 9 $ | $36$ | $9$ | $( 1,10,15, 3, 8,12,17, 5,14)( 2, 9,16, 4, 7,11,18, 6,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $36$ | $3$ | $( 1, 5,14)( 2, 6,13)( 3,10,15)( 4, 9,16)( 7,11,18)( 8,12,17)$ |
| $ 9, 9 $ | $36$ | $9$ | $( 1, 8,12,17,10,15, 3, 5,14)( 2, 7,11,18, 9,16, 4, 6,13)$ |
| $ 9, 9 $ | $36$ | $9$ | $( 1,15, 8,17,14,10, 3,12, 5)( 2,16, 7,18,13, 9, 4,11, 6)$ |
| $ 9, 9 $ | $36$ | $9$ | $( 1,15,10, 3,12, 8,17,14, 5)( 2,16, 9, 4,11, 7,18,13, 6)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $36$ | $3$ | $( 1,15, 5)( 2,16, 6)( 3,12,10)( 4,11, 9)( 7,18,13)( 8,17,14)$ |
| $ 18 $ | $36$ | $18$ | $( 1,11,10,18,15, 6, 3,13, 8, 2,12, 9,17,16, 5, 4,14, 7)$ |
| $ 18 $ | $36$ | $18$ | $( 1,11, 5, 4,14, 9,17,16, 8, 2,12, 6, 3,13,10,18,15, 7)$ |
| $ 6, 6, 6 $ | $36$ | $6$ | $( 1,11, 8, 2,12, 7)( 3,13, 5, 4,14, 6)( 9,17,16,10,18,15)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1,18, 3, 2,17, 4)( 5, 7,10, 6, 8, 9)(11,15,13,12,16,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1, 4,17, 2, 3,18)( 5, 9, 8, 6,10, 7)(11,14,16,12,13,15)$ |
| $ 6, 2, 2, 2, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 4)( 5, 7,10, 6, 8, 9)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 6, 2, 2, 2 $ | $12$ | $6$ | $( 1, 4,17, 2, 3,18)( 5, 6)( 7, 8)( 9,10)(11,14,16,12,13,15)$ |
| $ 6, 2, 2, 2, 2, 2, 2 $ | $54$ | $6$ | $( 1, 4)( 2, 3)( 5, 9)( 6,10)( 7, 8)(11,15,13,12,16,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1,18)( 2,17)( 3, 4)( 5, 7)( 6, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 18 $ | $36$ | $18$ | $( 1, 6,12, 4,10,13,17, 7,15, 2, 5,11, 3, 9,14,18, 8,16)$ |
| $ 6, 6, 6 $ | $36$ | $6$ | $( 1, 7,15, 2, 8,16)( 3, 6,12, 4, 5,11)( 9,14,18,10,13,17)$ |
| $ 18 $ | $36$ | $18$ | $( 1, 9,14,18, 5,11, 3, 7,15, 2,10,13,17, 6,12, 4, 8,16)$ |
Group invariants
| Order: | $648=2^{3} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [648, 706] |
| Character table: Data not available. |