Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $20$ | |
| Group : | $He_3:C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,5,3,15,7)(2,11,6,4,16,8)(9,18,14,10,17,13), (1,2)(3,17)(4,18)(5,10)(6,9)(7,8)(11,16)(12,15)(13,14) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 6: $C_6$
Degree 9: $C_3^2 : S_3 $
Low degree siblings
9T11, 9T13, 18T21, 18T22Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 8, 9)( 6, 7,10)(11,15,14)(12,16,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3,17)( 4,18)( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 8, 9)( 6, 7,10)(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 5,11)( 2, 6,12)( 3, 7,13)( 4, 8,14)( 9,15,17)(10,16,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $3$ | $3$ | $( 1, 5,15)( 2, 6,16)( 3, 7,12)( 4, 8,11)( 9,14,17)(10,13,18)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1, 6,11, 3, 9,13)( 2, 5,12, 4,10,14)( 7,15,18, 8,16,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1,11, 5)( 2,12, 6)( 3,13, 7)( 4,14, 8)( 9,17,15)(10,18,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $3$ | $3$ | $( 1,11, 9)( 2,12,10)( 3,13, 6)( 4,14, 5)( 7,18,16)( 8,17,15)$ |
| $ 6, 6, 6 $ | $9$ | $6$ | $( 1,12, 8,18,14, 6)( 2,11, 7,17,13, 5)( 3,15,10, 4,16, 9)$ |
Group invariants
| Order: | $54=2 \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [54, 5] |
| Character table: |
2 1 . 1 . . 1 1 . 1 1
3 3 2 1 3 2 2 1 2 2 1
1a 3a 2a 3b 3c 3d 6a 3e 3f 6b
2P 1a 3a 1a 3b 3e 3f 3f 3c 3d 3d
3P 1a 1a 2a 1a 1a 1a 2a 1a 1a 2a
5P 1a 3a 2a 3b 3e 3f 6b 3c 3d 6a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 1 1 1 -1 1 1 -1
X.3 1 1 -1 1 A A -A /A /A -/A
X.4 1 1 -1 1 /A /A -/A A A -A
X.5 1 1 1 1 A A A /A /A /A
X.6 1 1 1 1 /A /A /A A A A
X.7 2 -1 . 2 -1 2 . -1 2 .
X.8 2 -1 . 2 -/A B . -A /B .
X.9 2 -1 . 2 -A /B . -/A B .
X.10 6 . . -3 . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
|