Properties

Label 18T199
Order \(648\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $199$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,8,18,11,6,3,15,10)(2,13,7,17,12,5,4,16,9), (1,16,8,4,11,9,18,13,6,2,15,7,3,12,10,17,14,5), (1,13,7,17,15,6,3,12,9,2,14,8,18,16,5,4,11,10)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
12:  $A_4$
24:  $A_4\times C_2$
324:  $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: $A_4\times C_2$

Degree 9: $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$

Low degree siblings

18T199, 18T201, 18T205

Siblings are shown with degree $\leq 47$

A number field with this Galois group has exactly one arithmetically equivalent field.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 3, 3, 3, 3, 3 $ $4$ $3$ $( 1,18, 3)( 2,17, 4)( 5, 9, 7)( 6,10, 8)(11,15,14)(12,16,13)$
$ 3, 3, 3, 3, 3, 3 $ $4$ $3$ $( 1, 3,18)( 2, 4,17)( 5, 7, 9)( 6, 8,10)(11,14,15)(12,13,16)$
$ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ $12$ $3$ $( 5, 9, 7)( 6,10, 8)(11,15,14)(12,16,13)$
$ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $6$ $3$ $( 1, 3,18)( 2, 4,17)$
$ 6, 2, 2, 2, 2, 2, 1, 1 $ $54$ $6$ $( 1, 4)( 2, 3)( 5, 9)( 6,10)(11,13,15,12,14,16)(17,18)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ $27$ $2$ $( 1, 2)( 3,17)( 4,18)( 5, 7)( 6, 8)(11,12)(13,14)(15,16)$
$ 9, 9 $ $36$ $9$ $( 1,14, 8,18,11, 6, 3,15,10)( 2,13, 7,17,12, 5, 4,16, 9)$
$ 3, 3, 3, 3, 3, 3 $ $36$ $3$ $( 1,11,10)( 2,12, 9)( 3,14, 6)( 4,13, 5)( 7,17,16)( 8,18,15)$
$ 9, 9 $ $36$ $9$ $( 1,15, 6, 3,11, 8,18,14,10)( 2,16, 5, 4,12, 7,17,13, 9)$
$ 9, 9 $ $36$ $9$ $( 1, 8,11, 3,10,14,18, 6,15)( 2, 7,12, 4, 9,13,17, 5,16)$
$ 9, 9 $ $36$ $9$ $( 1, 6,14,18,10,11, 3, 8,15)( 2, 5,13,17, 9,12, 4, 7,16)$
$ 3, 3, 3, 3, 3, 3 $ $36$ $3$ $( 1,10,15)( 2, 9,16)( 3, 6,11)( 4, 5,12)( 7,13,17)( 8,14,18)$
$ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $27$ $2$ $( 7, 9)( 8,10)(11,13)(12,14)(15,16)$
$ 3, 3, 2, 2, 2, 2, 2, 1, 1 $ $54$ $6$ $( 1,18, 3)( 2,17, 4)( 5, 9)( 6,10)(11,12)(13,15)(14,16)$
$ 6, 6, 6 $ $4$ $6$ $( 1, 4,18, 2, 3,17)( 5,10, 7, 6, 9, 8)(11,16,14,12,15,13)$
$ 6, 6, 2, 2, 2 $ $12$ $6$ $( 1, 2)( 3, 4)( 5, 8, 9, 6, 7,10)(11,13,15,12,14,16)(17,18)$
$ 6, 2, 2, 2, 2, 2, 2 $ $6$ $6$ $( 1,17, 3, 2,18, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$
$ 6, 6, 6 $ $4$ $6$ $( 1,17, 3, 2,18, 4)( 5,10, 7, 6, 9, 8)(11,16,14,12,15,13)$
$ 18 $ $36$ $18$ $( 1,14, 5, 4,16,10,18,11, 7, 2,13, 6, 3,15, 9,17,12, 8)$
$ 6, 6, 6 $ $36$ $6$ $( 1,11, 5, 2,12, 6)( 3,14, 9, 4,13,10)( 7,17,16, 8,18,15)$
$ 18 $ $36$ $18$ $( 1,15, 5,17,13, 8, 3,11, 9, 2,16, 6,18,14, 7, 4,12,10)$
$ 18 $ $36$ $18$ $( 1, 8,14, 4, 9,12,18, 6,15, 2, 7,13, 3,10,11,17, 5,16)$
$ 6, 6, 6 $ $36$ $6$ $( 1, 6,14, 2, 5,13)( 3, 8,11, 4, 7,12)( 9,16,18,10,15,17)$
$ 18 $ $36$ $18$ $( 1,10,14,17, 7,16, 3, 6,11, 2, 9,13,18, 8,15, 4, 5,12)$

Group invariants

Order:  $648=2^{3} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [648, 706]
Character table: Data not available.