Properties

Label 18T189
Order \(648\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $189$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,5,16,3,11,4,18,2,10,6,17)(7,15,8,13,9,14), (1,5,3,4,2,6)(7,8,9)(10,15,17)(11,13,18)(12,14,16)
$|\Aut(F/K)|$:  $3$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
8:  $D_{4}$
12:  $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$
24:  $(C_6\times C_2):C_2$, $D_4 \times C_3$
36:  $C_6\times S_3$
72:  $C_3^2:D_4$, 12T42
216:  12T116, 12T121

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 6: $S_3\times C_3$, $C_3^2:D_4$

Degree 9: None

Low degree siblings

12T167 x 2, 18T189

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 54 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $648=2^{3} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [648, 719]
Character table: Data not available.