Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $185$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18,14,11,9,3)(2,17,13,12,10,4)(5,8,16,6,7,15), (1,6)(2,5)(7,13,8,14)(9,15,10,16)(11,18,12,17) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 36: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$ x 2
Degree 6: None
Degree 9: $S_3^2$
Low degree siblings
8T45, 12T161, 12T163, 12T165 x 2, 16T1032, 16T1034, 18T179, 18T180, 18T185Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1,14, 9)( 2,13,10)( 3,18,11)( 4,17,12)( 5,16, 7)( 6,15, 8)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1,16,11)( 2,15,12)( 3,14, 8)( 4,13, 7)( 5,17, 9)( 6,18,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3, 9,16)( 4,10,15)( 5,12,13)( 6,11,14)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1, 8,18, 2, 7,17)( 3, 9,15)( 4,10,16)( 5,11,14, 6,12,13)$ |
| $ 4, 4, 2, 2, 2, 1, 1, 1, 1 $ | $36$ | $4$ | $( 3, 7)( 4, 8)( 5,17, 6,18)(11,15,12,16)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5,17)( 6,18)( 9,10)(11,15)(12,16)(13,14)$ |
| $ 6, 6, 6 $ | $96$ | $6$ | $( 1,14,10, 2,13, 9)( 3, 5,12, 7,18,16)( 4, 6,11, 8,17,15)$ |
| $ 4, 4, 4, 2, 2, 1, 1 $ | $72$ | $4$ | $( 3, 5)( 4, 6)( 7,18, 8,17)( 9,14,10,13)(11,16,12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1, 2)( 3, 6)( 4, 5)( 7,17)( 8,18)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 4, 4, 2, 2, 2, 2, 2 $ | $36$ | $4$ | $( 1, 2)( 3, 6, 4, 5)( 7,17, 8,18)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 3,17)( 4,18)( 5, 7)( 6, 8)( 9,13)(10,14)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $36$ | $4$ | $( 1, 2)( 3,18)( 4,17)( 5, 7, 6, 8)( 9,14,10,13)(15,16)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1,16,11)( 2,15,12)( 3, 9, 7,17,14, 6)( 4,10, 8,18,13, 5)$ |
Group invariants
| Order: | $576=2^{6} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [576, 8654] |
| Character table: |
2 6 5 6 1 1 2 2 4 4 1 3 4 4 4 4 1
3 2 1 . 2 2 2 1 . 1 1 . . . 1 . 1
1a 2a 2b 3a 3b 3c 6a 4a 2c 6b 4b 2d 4c 2e 4d 6c
2P 1a 1a 1a 3a 3b 3c 3c 2b 1a 3a 2a 1a 2b 1a 2b 3b
3P 1a 2a 2b 1a 1a 1a 2a 4a 2c 2c 4b 2d 4c 2e 4d 2e
5P 1a 2a 2b 3a 3b 3c 6a 4a 2c 6b 4b 2d 4c 2e 4d 6c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1
X.3 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1
X.4 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
X.5 2 2 2 -1 2 -1 -1 2 2 -1 . . . . . .
X.6 2 2 2 -1 2 -1 -1 -2 -2 1 . . . . . .
X.7 2 2 2 2 -1 -1 -1 . . . . . . -2 -2 1
X.8 2 2 2 2 -1 -1 -1 . . . . . . 2 2 -1
X.9 4 4 4 -2 -2 1 1 . . . . . . . . .
X.10 6 2 -2 . . 3 -1 . . . . -2 2 . . .
X.11 6 2 -2 . . 3 -1 . . . . 2 -2 . . .
X.12 9 -3 1 . . . . -1 3 . -1 1 1 3 -1 .
X.13 9 -3 1 . . . . -1 3 . 1 -1 -1 -3 1 .
X.14 9 -3 1 . . . . 1 -3 . -1 1 1 -3 1 .
X.15 9 -3 1 . . . . 1 -3 . 1 -1 -1 3 -1 .
X.16 12 4 -4 . . -3 1 . . . . . . . . .
|