Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $178$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,14,12,2,13,11)(3,16,8,4,15,7)(5,17,10)(6,18,9), (1,9,16,2,10,15)(3,12,17,4,11,18)(5,7,14)(6,8,13) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ x 4 9: $C_3^2$ 12: $A_4$ x 3 36: $C_3\times A_4$ x 3 144: 12T85 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$ x 4
Degree 6: None
Degree 9: $C_3^2$
Low degree siblings
12T164 x 3, 18T178 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 7, 8)( 9,10)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 4)( 5, 6)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)(11,12)(13,14)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,12,13)( 2,11,14)( 3, 8,15)( 4, 7,16)( 5,10,17)( 6, 9,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,13,12)( 2,14,11)( 3,15, 8)( 4,16, 7)( 5,17,10)( 6,18, 9)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 7, 8)( 9,10)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 5, 6)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 5, 6)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 1, 2)( 3, 4)( 7, 8)(11,12)(13,14)(15,16)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,12,13, 2,11,14)( 3, 8,15, 4, 7,16)( 5,10,17)( 6, 9,18)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,13,11, 2,14,12)( 3,15, 7, 4,16, 8)( 5,17,10)( 6,18, 9)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,16,10)( 2,15, 9)( 3,17,11)( 4,18,12)( 5,14, 7)( 6,13, 8)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,15,10)( 2,16, 9)( 3,18,12, 4,17,11)( 5,14, 8, 6,13, 7)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 4, 6)( 2, 3, 5)( 7,10,12)( 8, 9,11)(13,15,18)(14,16,17)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1, 7,17, 2, 8,18)( 3,10,13)( 4, 9,14)( 5,11,15, 6,12,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 8,18)( 2, 7,17)( 3, 9,14)( 4,10,13)( 5,11,15)( 6,12,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,10,16)( 2, 9,15)( 3,11,17)( 4,12,18)( 5, 7,14)( 6, 8,13)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1, 9,16)( 2,10,15)( 3,11,18, 4,12,17)( 5, 8,13, 6, 7,14)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,17, 8)( 2,18, 7)( 3,14,10, 4,13, 9)( 5,16,12, 6,15,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,18, 8)( 2,17, 7)( 3,14, 9)( 4,13,10)( 5,15,11)( 6,16,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 5, 4)( 2, 6, 3)( 7,11,10)( 8,12, 9)(13,18,16)(14,17,15)$ |
Group invariants
| Order: | $576=2^{6} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [576, 8664] |
| Character table: Data not available. |