Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $175$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18,10)(2,17,9)(3,6,11,7,13,15)(4,5,12,8,14,16), (1,6,18,15,9,7)(2,5,17,16,10,8)(3,12,14,4,11,13) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 12: $D_{6}$, $C_6\times C_2$ 18: $S_3\times C_3$ 36: $C_6\times S_3$ 288: $A_4\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 6: None
Degree 9: $S_3\times C_3$
Low degree siblings
12T158, 16T1028, 18T175Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 9,10)(13,14)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,10,18)( 2, 9,17)( 3,11,13)( 4,12,14)( 5, 8,16)( 6, 7,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,18,10)( 2,17, 9)( 3,13,11)( 4,14,12)( 5,16, 8)( 6,15, 7)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1,12,16)( 2,11,15)( 3, 7,17)( 4, 8,18)( 5, 9,14)( 6,10,13)$ |
| $ 6, 6, 3, 3 $ | $24$ | $6$ | $( 1,14, 8)( 2,13, 7)( 3,15, 9, 4,16,10)( 5,17,11, 6,18,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1,14, 8)( 2,13, 7)( 3,16, 9)( 4,15,10)( 5,18,11)( 6,17,12)$ |
| $ 6, 6, 3, 3 $ | $24$ | $6$ | $( 1, 4, 5, 2, 3, 6)( 7, 9,12, 8,10,11)(13,15,17)(14,16,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12)( 8, 9,11)(13,15,17)(14,16,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 3, 7)( 4, 8)( 5,14)( 6,13)(11,15)(12,16)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $36$ | $4$ | $( 1, 2)( 3, 8)( 4, 7)( 5,14, 6,13)( 9,10)(11,15,12,16)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,10,18)( 2, 9,17)( 3,15,13, 7,11, 6)( 4,16,14, 8,12, 5)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,18,10)( 2,17, 9)( 3, 6,11, 7,13,15)( 4, 5,12, 8,14,16)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)(11,12)(15,16)$ |
| $ 6, 6, 6 $ | $16$ | $6$ | $( 1,10,18, 2, 9,17)( 3,11,13, 4,12,14)( 5, 8,16, 6, 7,15)$ |
| $ 6, 6, 6 $ | $16$ | $6$ | $( 1,18, 9, 2,17,10)( 3,13,12, 4,14,11)( 5,16, 7, 6,15, 8)$ |
| $ 6, 6, 6 $ | $32$ | $6$ | $( 1,12,16, 2,11,15)( 3, 7,17, 4, 8,18)( 5, 9,14, 6,10,13)$ |
| $ 6, 3, 3, 3, 3 $ | $24$ | $6$ | $( 1,14, 7, 2,13, 8)( 3,15,10)( 4,16, 9)( 5,17,12)( 6,18,11)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1,14, 7, 2,13, 8)( 3,16,10, 4,15, 9)( 5,18,12, 6,17,11)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1, 4, 5, 2, 3, 6)( 7, 9,12, 8,10,11)(13,16,17,14,15,18)$ |
| $ 6, 3, 3, 3, 3 $ | $24$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12)( 8, 9,11)(13,16,17,14,15,18)$ |
| $ 4, 4, 2, 2, 2, 1, 1, 1, 1 $ | $36$ | $4$ | $( 3, 7)( 4, 8)( 5,14, 6,13)(11,15,12,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5,14)( 6,13)( 9,10)(11,15)(12,16)(17,18)$ |
| $ 6, 6, 6 $ | $48$ | $6$ | $( 1,10,18, 2, 9,17)( 3,15,14, 7,11, 6)( 4,16,13, 8,12, 5)$ |
| $ 6, 6, 6 $ | $48$ | $6$ | $( 1,18, 9, 2,17,10)( 3, 6,11, 7,13,16)( 4, 5,12, 8,14,15)$ |
Group invariants
| Order: | $576=2^{6} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [576, 8656] |
| Character table: Data not available. |