Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $17$ | |
| Group : | $C_3^2\times S_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,8)(2,14,9)(3,15,7), (1,12,2,10,3,11)(4,13,5,14,6,15)(7,16,8,17,9,18) | |
| $|\Aut(F/K)|$: | $9$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ x 4 6: $S_3$, $C_6$ x 4 9: $C_3^2$ 18: $S_3\times C_3$ x 4, $C_6 \times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 6: $C_6$, $S_3\times C_3$ x 3
Degree 9: None
Low degree siblings
18T17 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 4,11,16)( 5,12,17)( 6,10,18)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $3$ | $( 4,16,11)( 5,17,12)( 6,18,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4,12,18)( 5,10,16)( 6,11,17)( 7, 8, 9)(13,14,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4,17,10)( 5,18,11)( 6,16,12)( 7, 8, 9)(13,14,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 2)( 4,10,17)( 5,11,18)( 6,12,16)( 7, 9, 8)(13,15,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 2)( 4,18,12)( 5,16,10)( 6,17,11)( 7, 9, 8)(13,15,14)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 4, 3, 6, 2, 5)( 7,10, 9,12, 8,11)(13,16,15,18,14,17)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 4, 7,10,14,17)( 2, 5, 8,11,15,18)( 3, 6, 9,12,13,16)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 4,15,18, 9,12)( 2, 5,13,16, 7,10)( 3, 6,14,17, 8,11)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 5, 2, 6, 3, 4)( 7,11, 8,12, 9,10)(13,17,14,18,15,16)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 5, 9,10,15,16)( 2, 6, 7,11,13,17)( 3, 4, 8,12,14,18)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 5,14,18, 7,11)( 2, 6,15,16, 8,12)( 3, 4,13,17, 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 6)( 2, 4)( 3, 5)( 7,12)( 8,10)( 9,11)(13,18)(14,16)(15,17)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 6, 8,10,13,18)( 2, 4, 9,11,14,16)( 3, 5, 7,12,15,17)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 6,13,18, 8,10)( 2, 4,14,16, 9,11)( 3, 5,15,17, 7,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 7,14)( 2, 8,15)( 3, 9,13)( 4,10,17)( 5,11,18)( 6,12,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,14)( 2, 8,15)( 3, 9,13)( 4,18,12)( 5,16,10)( 6,17,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 8,13)( 2, 9,14)( 3, 7,15)( 4,11,16)( 5,12,17)( 6,10,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 8,13)( 2, 9,14)( 3, 7,15)( 4,16,11)( 5,17,12)( 6,18,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 9,15)( 2, 7,13)( 3, 8,14)( 4,12,18)( 5,10,16)( 6,11,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,15)( 2, 7,13)( 3, 8,14)( 4,17,10)( 5,18,11)( 6,16,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,13, 8)( 2,14, 9)( 3,15, 7)( 4,16,11)( 5,17,12)( 6,18,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,14, 7)( 2,15, 8)( 3,13, 9)( 4,17,10)( 5,18,11)( 6,16,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,15, 9)( 2,13, 7)( 3,14, 8)( 4,18,12)( 5,16,10)( 6,17,11)$ |
Group invariants
| Order: | $54=2 \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [54, 12] |
| Character table: Data not available. |