Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $156$ | |
| Group : | $C_2\times (C_3\times A_4):S_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,6,2,3,5)(7,11,9,8,12,10)(13,14)(15,16)(17,18), (1,16,4,17,6,13,2,15,3,18,5,14)(7,12,9)(8,11,10), (1,9)(2,10)(3,12)(4,11)(5,8)(6,7)(13,14)(15,16)(17,18) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 4 12: $D_{6}$ x 4 18: $C_3^2:C_2$ 24: $S_4$ 36: 18T12 48: $S_4\times C_2$ 54: $(C_3^2:C_3):C_2$ 72: 12T44 108: 18T52 144: 18T66 216: 18T107 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: $S_4\times C_2$
Degree 9: $(C_3^2:C_3):C_2$
Low degree siblings
18T156Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $6$ | $( 7, 9,12)( 8,10,11)(13,17,16,14,18,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 7, 9,12)( 8,10,11)(13,18,16)(14,17,15)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $6$ | $6$ | $( 7,10,12, 8, 9,11)(13,17,16,14,18,15)$ |
| $ 6, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $6$ | $( 7,10,12, 8, 9,11)(13,18,16)(14,17,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 7,13)( 8,14)( 9,16)(10,15)(11,17)(12,18)$ |
| $ 4, 4, 4, 1, 1, 1, 1, 1, 1 $ | $18$ | $4$ | $( 7,13, 8,14)( 9,16,10,15)(11,17,12,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9,12)( 8,10,11)(13,17,16,14,18,15)$ |
| $ 3, 3, 3, 3, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9,12)( 8,10,11)(13,18,16)(14,17,15)$ |
| $ 6, 6, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,10,12, 8, 9,11)(13,17,16,14,18,15)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,10,12, 8, 9,11)(13,18,16)(14,17,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $18$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,13)( 8,14)( 9,16)(10,15)(11,17)(12,18)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,13, 8,14)( 9,16,10,15)(11,17,12,18)$ |
| $ 6, 3, 3, 3, 3 $ | $3$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,12)( 8,10,11)(13,15,18,14,16,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,12)( 8,10,11)(13,16,18)(14,15,17)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7,10,12, 8, 9,11)(13,15,18,14,16,17)$ |
| $ 12, 3, 3 $ | $18$ | $12$ | $( 1, 3, 6)( 2, 4, 5)( 7,13,11,17, 9,16, 8,14,12,18,10,15)$ |
| $ 6, 6, 3, 3 $ | $18$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7,13,12,18, 9,16)( 8,14,11,17,10,15)$ |
| $ 6, 6, 6 $ | $1$ | $6$ | $( 1, 4, 6, 2, 3, 5)( 7,10,12, 8, 9,11)(13,15,18,14,16,17)$ |
| $ 12, 6 $ | $18$ | $12$ | $( 1, 4, 6, 2, 3, 5)( 7,13,11,17, 9,16, 8,14,12,18,10,15)$ |
| $ 6, 6, 6 $ | $18$ | $6$ | $( 1, 4, 6, 2, 3, 5)( 7,13,12,18, 9,16)( 8,14,11,17,10,15)$ |
| $ 6, 6, 6 $ | $1$ | $6$ | $( 1, 5, 3, 2, 6, 4)( 7,11, 9, 8,12,10)(13,17,16,14,18,15)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 5, 3, 2, 6, 4)( 7,11, 9, 8,12,10)(13,18,16)(14,17,15)$ |
| $ 6, 3, 3, 3, 3 $ | $3$ | $6$ | $( 1, 5, 3, 2, 6, 4)( 7,12, 9)( 8,11,10)(13,18,16)(14,17,15)$ |
| $ 6, 6, 6 $ | $18$ | $6$ | $( 1, 5, 3, 2, 6, 4)( 7,13, 9,16,12,18)( 8,14,10,15,11,17)$ |
| $ 12, 6 $ | $18$ | $12$ | $( 1, 5, 3, 2, 6, 4)( 7,13,10,15,12,18, 8,14, 9,16,11,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 6, 3)( 2, 5, 4)( 7,12, 9)( 8,11,10)(13,18,16)(14,17,15)$ |
| $ 6, 6, 3, 3 $ | $18$ | $6$ | $( 1, 6, 3)( 2, 5, 4)( 7,13, 9,16,12,18)( 8,14,10,15,11,17)$ |
| $ 12, 3, 3 $ | $18$ | $12$ | $( 1, 6, 3)( 2, 5, 4)( 7,13,10,15,12,18, 8,14, 9,16,11,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $24$ | $3$ | $( 1, 7,13)( 2, 8,14)( 3, 9,16)( 4,10,15)( 5,11,17)( 6,12,18)$ |
| $ 6, 6, 6 $ | $24$ | $6$ | $( 1, 7,13, 2, 8,14)( 3, 9,16, 4,10,15)( 5,11,17, 6,12,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $24$ | $3$ | $( 1, 7,15)( 2, 8,16)( 3, 9,17)( 4,10,18)( 5,11,13)( 6,12,14)$ |
| $ 6, 6, 6 $ | $24$ | $6$ | $( 1, 7,15, 2, 8,16)( 3, 9,17, 4,10,18)( 5,11,13, 6,12,14)$ |
| $ 6, 6, 6 $ | $24$ | $6$ | $( 1, 7,17, 2, 8,18)( 3, 9,14, 4,10,13)( 5,11,16, 6,12,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $24$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3, 9,14)( 4,10,13)( 5,11,16)( 6,12,15)$ |
Group invariants
| Order: | $432=2^{4} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [432, 538] |
| Character table: Data not available. |