Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $150$ | |
| Group : | $S_3\times S_3\wr C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,3)(5,6)(8,9)(11,12)(14,15)(17,18), (1,6,2,4,3,5)(7,12,14,16,9,11,13,18,8,10,15,17), (1,3,2)(4,18,11)(5,16,12)(6,17,10)(7,15,8,13,9,14) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ 8: $D_{4}$ x 2, $C_2^3$ 12: $D_{6}$ x 3 16: $D_4\times C_2$ 24: $S_3 \times C_2^2$ 48: 12T28 72: $C_3^2:D_4$ 144: 12T77 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$, $C_3^2:D_4$
Degree 9: None
Low degree siblings
12T156 x 2, 18T150Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $(10,16)(11,17)(12,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 7,13)( 8,14)( 9,15)(10,16)(11,17)(12,18)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 4,10,16)( 5,11,17)( 6,12,18)$ |
| $ 3, 3, 3, 2, 2, 2, 1, 1, 1 $ | $12$ | $6$ | $( 4,10,16)( 5,11,17)( 6,12,18)( 7,13)( 8,14)( 9,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $18$ | $2$ | $( 2, 3)( 5, 6)( 8, 9)(10,16)(11,18)(12,17)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $27$ | $2$ | $( 2, 3)( 5, 6)( 7,13)( 8,15)( 9,14)(10,16)(11,18)(12,17)$ |
| $ 6, 3, 2, 2, 2, 1, 1, 1 $ | $12$ | $6$ | $( 2, 3)( 4,10,16)( 5,12,17, 6,11,18)( 8, 9)(14,15)$ |
| $ 6, 3, 2, 2, 2, 2, 1 $ | $36$ | $6$ | $( 2, 3)( 4,10,16)( 5,12,17, 6,11,18)( 7,13)( 8,15)( 9,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$ |
| $ 6, 3, 3, 3, 3 $ | $12$ | $6$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,17,12,16,11,18)(13,14,15)$ |
| $ 6, 6, 3, 3 $ | $18$ | $6$ | $( 1, 2, 3)( 4, 5, 6)( 7,14, 9,13, 8,15)(10,17,12,16,11,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 2, 3)( 4,11,18)( 5,12,16)( 6,10,17)( 7, 8, 9)(13,14,15)$ |
| $ 6, 3, 3, 3, 3 $ | $24$ | $6$ | $( 1, 2, 3)( 4,11,18)( 5,12,16)( 6,10,17)( 7,14, 9,13, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)(13,16)(14,17)(15,18)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $18$ | $4$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10,13,16)( 8,11,14,17)( 9,12,15,18)$ |
| $ 6, 6, 6 $ | $12$ | $6$ | $( 1, 4, 7,10,13,16)( 2, 5, 8,11,14,17)( 3, 6, 9,12,15,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $18$ | $2$ | $( 1, 4)( 2, 6)( 3, 5)( 7,10)( 8,12)( 9,11)(13,16)(14,18)(15,17)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $54$ | $4$ | $( 1, 4)( 2, 6)( 3, 5)( 7,10,13,16)( 8,12,14,18)( 9,11,15,17)$ |
| $ 6, 6, 6 $ | $36$ | $6$ | $( 1, 4, 7,10,13,16)( 2, 6, 8,12,14,18)( 3, 5, 9,11,15,17)$ |
| $ 6, 6, 6 $ | $12$ | $6$ | $( 1, 5, 3, 4, 2, 6)( 7,11, 9,10, 8,12)(13,17,15,16,14,18)$ |
| $ 12, 6 $ | $36$ | $12$ | $( 1, 5, 3, 4, 2, 6)( 7,11,15,16, 8,12,13,17, 9,10,14,18)$ |
| $ 6, 6, 6 $ | $24$ | $6$ | $( 1, 5, 9,10,14,18)( 2, 6, 7,11,15,16)( 3, 4, 8,12,13,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 7,13)( 2, 8,14)( 3, 9,15)( 4,10,16)( 5,11,17)( 6,12,18)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1, 7,13)( 2, 9,14, 3, 8,15)( 4,10,16)( 5,12,17, 6,11,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 8,15)( 2, 9,13)( 3, 7,14)( 4,11,18)( 5,12,16)( 6,10,17)$ |
Group invariants
| Order: | $432=2^{4} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [432, 741] |
| Character table: Data not available. |