Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $137$ | |
| Group : | $C_3\wr S_3:C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,4,10,17,7)(2,5,3,9,18,8)(11,13)(12,14)(15,16), (1,15,4,11,17,14)(2,16,3,12,18,13)(5,8,9)(6,7,10) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 36: $S_3^2$ 108: $C_3^2 : D_{6} $ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$
Degree 9: $((C_3^3:C_3):C_2):C_2$
Low degree siblings
9T24 x 3, 18T129 x 3, 18T136 x 3, 18T137 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 8, 9)( 6, 7,10)(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 8, 9)( 6, 7,10)(11,15,14)(12,16,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5,11)( 6,12)( 7,13)( 8,14)( 9,15)(10,16)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $18$ | $6$ | $( 5,11, 8,14, 9,15)( 6,12, 7,13,10,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1, 2)( 3,17)( 4,18)( 5, 6)( 7, 9)( 8,10)(11,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1, 2)( 3,17)( 4,18)( 5,12)( 6,11)( 7,15)( 8,16)( 9,13)(10,14)$ |
| $ 6, 6, 2, 2, 2 $ | $54$ | $6$ | $( 1, 2)( 3,17)( 4,18)( 5,12, 8,16, 9,13)( 6,11, 7,15,10,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 8, 9)( 6, 7,10)(11,14,15)(12,13,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 8, 9)( 6, 7,10)(11,15,14)(12,16,13)$ |
| $ 3, 3, 2, 2, 2, 2, 2, 2 $ | $18$ | $6$ | $( 1, 4,17)( 2, 3,18)( 5,11)( 6,12)( 7,13)( 8,14)( 9,15)(10,16)$ |
| $ 6, 6, 3, 3 $ | $18$ | $6$ | $( 1, 4,17)( 2, 3,18)( 5,11, 8,14, 9,15)( 6,12, 7,13,10,16)$ |
| $ 6, 6, 3, 3 $ | $18$ | $6$ | $( 1, 4,17)( 2, 3,18)( 5,11, 9,15, 8,14)( 6,12,10,16, 7,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $18$ | $3$ | $( 1, 5,11)( 2, 6,12)( 3, 7,13)( 4, 8,14)( 9,15,17)(10,16,18)$ |
| $ 9, 9 $ | $36$ | $9$ | $( 1, 5,11, 4, 8,14,17, 9,15)( 2, 6,12, 3, 7,13,18,10,16)$ |
| $ 6, 6, 6 $ | $54$ | $6$ | $( 1, 6,11, 2, 5,12)( 3, 9,13,17, 7,15)( 4,10,14,18, 8,16)$ |
Group invariants
| Order: | $324=2^{2} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [324, 39] |
| Character table: |
2 2 1 1 1 2 1 2 2 1 1 1 1 1 1 1 . 1
3 4 3 3 3 2 2 1 1 1 4 3 2 2 2 2 2 1
1a 3a 3b 3c 2a 6a 2b 2c 6b 3d 3e 6c 6d 6e 3f 9a 6f
2P 1a 3a 3b 3c 1a 3b 1a 1a 3c 3d 3e 3a 3e 3d 3f 9a 3f
3P 1a 1a 1a 1a 2a 2a 2b 2c 2c 1a 1a 2a 2a 2a 1a 3d 2b
5P 1a 3a 3b 3c 2a 6a 2b 2c 6b 3d 3e 6c 6d 6e 3f 9a 6f
7P 1a 3a 3b 3c 2a 6a 2b 2c 6b 3d 3e 6c 6d 6e 3f 9a 6f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 1 -1
X.3 1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 1
X.4 1 1 1 1 1 1 -1 -1 -1 1 1 1 1 1 1 1 -1
X.5 2 2 2 2 . . -2 . . 2 2 . . . -1 -1 1
X.6 2 2 2 2 . . 2 . . 2 2 . . . -1 -1 -1
X.7 2 -1 -1 2 -2 1 . . . 2 -1 1 1 -2 2 -1 .
X.8 2 -1 -1 2 2 -1 . . . 2 -1 -1 -1 2 2 -1 .
X.9 4 -2 -2 4 . . . . . 4 -2 . . . -2 1 .
X.10 6 -3 3 . -2 1 . . . -3 . 1 -2 1 . . .
X.11 6 -3 3 . 2 -1 . . . -3 . -1 2 -1 . . .
X.12 6 . -3 . -2 1 . . . -3 3 -2 1 1 . . .
X.13 6 . -3 . 2 -1 . . . -3 3 2 -1 -1 . . .
X.14 6 . . -3 . . . -2 1 6 . . . . . . .
X.15 6 . . -3 . . . 2 -1 6 . . . . . . .
X.16 6 3 . . -2 -2 . . . -3 -3 1 1 1 . . .
X.17 6 3 . . 2 2 . . . -3 -3 -1 -1 -1 . . .
|