Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $111$ | |
| Group : | $C_2\times S_3\times S_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,10,6,15,7)(2,14,9,5,16,8)(3,18,12)(4,17,11), (1,6,3)(2,5,4)(7,18,9,14,12,15,8,17,10,13,11,16), (1,9,15,2,10,16)(3,8,18,5,12,14)(4,7,17,6,11,13) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ x 2 8: $C_2^3$ 12: $D_{6}$ x 6 24: $S_4$, $S_3 \times C_2^2$ x 2 36: $S_3^2$ 48: $S_4\times C_2$ x 3 72: 12T37 96: 12T48 144: 12T83 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$ x 2
Degree 6: $S_4\times C_2$
Degree 9: $S_3^2$
Low degree siblings
18T111 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 7,13)( 8,14)( 9,16)(10,15)(11,17)(12,18)$ |
| $ 4, 4, 4, 1, 1, 1, 1, 1, 1 $ | $6$ | $4$ | $( 7,13, 8,14)( 9,16,10,15)(11,17,12,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $9$ | $2$ | $( 3, 6)( 4, 5)( 7,11)( 8,12)( 9,10)(13,17)(14,18)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 6)( 4, 5)( 7,11)( 8,12)( 9,10)(13,18)(14,17)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 6)( 4, 5)( 7,12)( 8,11)(13,18)(14,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $18$ | $2$ | $( 3, 6)( 4, 5)( 7,17)( 8,18)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 2, 2, 1, 1 $ | $18$ | $4$ | $( 3, 6)( 4, 5)( 7,17, 8,18)( 9,15,10,16)(11,13,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,13)( 8,14)( 9,16)(10,15)(11,17)(12,18)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $6$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,13, 8,14)( 9,16,10,15)(11,17,12,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3, 5)( 4, 6)( 7,11)( 8,12)( 9,10)(13,17)(14,18)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $18$ | $2$ | $( 1, 2)( 3, 5)( 4, 6)( 7,17)( 8,18)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 5)( 4, 6)( 7,17, 8,18)( 9,15,10,16)(11,13,12,14)$ |
| $ 6, 3, 3, 3, 3 $ | $6$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,12, 8,10,11)(13,15,18)(14,16,17)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,12, 8,10,11)(13,16,18,14,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 6)( 2, 4, 5)( 7,10,12)( 8, 9,11)(13,15,18)(14,16,17)$ |
| $ 12, 3, 3 $ | $12$ | $12$ | $( 1, 3, 6)( 2, 4, 5)( 7,15,11,14,10,18, 8,16,12,13, 9,17)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7,15,12,13,10,18)( 8,16,11,14, 9,17)$ |
| $ 6, 6, 6 $ | $2$ | $6$ | $( 1, 4, 6, 2, 3, 5)( 7, 9,12, 8,10,11)(13,16,18,14,15,17)$ |
| $ 12, 6 $ | $12$ | $12$ | $( 1, 4, 6, 2, 3, 5)( 7,15,11,14,10,18, 8,16,12,13, 9,17)$ |
| $ 6, 6, 6 $ | $12$ | $6$ | $( 1, 4, 6, 2, 3, 5)( 7,15,12,13,10,18)( 8,16,11,14, 9,17)$ |
| $ 6, 6, 6 $ | $16$ | $6$ | $( 1, 7,17, 2, 8,18)( 3,10,14, 4, 9,13)( 5,11,15, 6,12,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3,10,14)( 4, 9,13)( 5,11,15)( 6,12,16)$ |
| $ 6, 6, 3, 3 $ | $24$ | $6$ | $( 1, 7,15, 6,10,13)( 2, 8,16, 5, 9,14)( 3,12,18)( 4,11,17)$ |
| $ 6, 6, 6 $ | $24$ | $6$ | $( 1, 7,15, 5, 9,14)( 2, 8,16, 6,10,13)( 3,12,18, 4,11,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 9,16)( 2,10,15)( 3,11,17)( 4,12,18)( 5, 7,13)( 6, 8,14)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1, 9,16, 2,10,15)( 3,11,17, 4,12,18)( 5, 7,13, 6, 8,14)$ |
Group invariants
| Order: | $288=2^{5} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [288, 1028] |
| Character table: Data not available. |