Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $109$ | |
| Group : | $C_2\times A_4^2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,18)(2,9,17)(3,12,14)(4,11,13)(5,7,16)(6,8,15), (1,6,3)(2,5,4)(7,12,10,8,11,9)(13,18,15)(14,17,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ x 4 6: $C_6$ x 4 9: $C_3^2$ 12: $A_4$ x 2 18: $C_6 \times C_3$ 24: $A_4\times C_2$ x 2 36: $C_3\times A_4$ x 2 72: 18T25 x 2 144: 12T85 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$ x 4
Degree 6: None
Degree 9: $C_3^2$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 5, 6)(11,12)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5, 6)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 4)( 5, 6)( 9,10)(11,12)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 3, 3, 3, 3 $ | $12$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,12, 8,10,11)(13,15,17)(14,16,18)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,12, 8,10,11)(13,16,17,14,15,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12)( 8, 9,11)(13,15,17)(14,16,18)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7,10,12, 8, 9,11)(13,15,17,14,16,18)$ |
| $ 6, 3, 3, 3, 3 $ | $12$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 7,11,10, 8,12, 9)(13,17,15)(14,18,16)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 7,11,10, 8,12, 9)(13,18,15,14,17,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7,12,10)( 8,11, 9)(13,17,15)(14,18,16)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1, 5, 4, 2, 6, 3)( 7,12, 9, 8,11,10)(13,17,16,14,18,15)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1, 7,13)( 2, 8,14)( 3, 9,15, 4,10,16)( 5,11,17, 6,12,18)$ |
| $ 6, 3, 3, 3, 3 $ | $12$ | $6$ | $( 1, 7,13, 2, 8,14)( 3, 9,15)( 4,10,16)( 5,11,17)( 6,12,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 7,13)( 2, 8,14)( 3,10,15)( 4, 9,16)( 5,12,17)( 6,11,18)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1, 7,13, 2, 8,14)( 3,10,15, 4, 9,16)( 5,12,17, 6,11,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 9,18)( 2,10,17)( 3,11,13)( 4,12,14)( 5, 7,15)( 6, 8,16)$ |
| $ 6, 6, 6 $ | $16$ | $6$ | $( 1, 9,18, 2,10,17)( 3,11,13, 4,12,14)( 5, 7,15, 6, 8,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,11,16)( 2,12,15)( 3, 7,17)( 4, 8,18)( 5, 9,13)( 6,10,14)$ |
| $ 6, 6, 6 $ | $16$ | $6$ | $( 1,11,16, 2,12,15)( 3, 7,17, 4, 8,18)( 5, 9,13, 6,10,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,13, 7)( 2,14, 8)( 3,15,10)( 4,16, 9)( 5,17,12)( 6,18,11)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1,13, 8, 2,14, 7)( 3,15, 9, 4,16,10)( 5,17,11, 6,18,12)$ |
| $ 6, 3, 3, 3, 3 $ | $12$ | $6$ | $( 1,13, 7)( 2,14, 8)( 3,15,10)( 4,16, 9)( 5,18,12, 6,17,11)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1,13, 8, 2,14, 7)( 3,15, 9, 4,16,10)( 5,18,11)( 6,17,12)$ |
| $ 6, 6, 6 $ | $16$ | $6$ | $( 1,15,11, 2,16,12)( 3,17, 8, 4,18, 7)( 5,13, 9, 6,14,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,15,12)( 2,16,11)( 3,17, 7)( 4,18, 8)( 5,13,10)( 6,14, 9)$ |
| $ 6, 6, 6 $ | $16$ | $6$ | $( 1,17, 9, 2,18,10)( 3,13,11, 4,14,12)( 5,15, 8, 6,16, 7)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,17,10)( 2,18, 9)( 3,13,12)( 4,14,11)( 5,15, 7)( 6,16, 8)$ |
Group invariants
| Order: | $288=2^{5} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [288, 1029] |
| Character table: Data not available. |