Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $108$ | |
| Group : | $(C_3\times A_4):S_3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,3,2,5,4)(7,14,10,16,12,18,8,13,9,15,11,17), (1,3,5)(2,4,6)(7,14,12,18,9,15)(8,13,11,17,10,16), (1,12)(2,11)(3,7)(4,8)(5,9)(6,10) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ x 4 18: $C_3^2:C_2$ 24: $S_4$ 54: $(C_3^2:C_3):C_2$ 72: 12T44 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: $S_4$
Degree 9: $(C_3^2:C_3):C_2$
Low degree siblings
18T107Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 7, 9,12)( 8,10,11)(13,17,16)(14,18,15)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $6$ | $6$ | $( 7,10,12, 8, 9,11)(13,18,16,14,17,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 7,13)( 8,14)( 9,16)(10,15)(11,18)(12,17)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9,12)( 8,10,11)(13,18,16,14,17,15)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,10,12, 8, 9,11)(13,17,16)(14,18,15)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,13, 8,14)( 9,16,10,15)(11,18,12,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,12)( 8,10,11)(13,16,17)(14,15,18)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12, 8, 9,11)(13,15,17,14,16,18)$ |
| $ 6, 6, 3, 3 $ | $18$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7,13,12,17, 9,16)( 8,14,11,18,10,15)$ |
| $ 12, 6 $ | $18$ | $12$ | $( 1, 4, 5, 2, 3, 6)( 7,13,11,18, 9,16, 8,14,12,17,10,15)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 7,11, 9, 8,12,10)(13,18,16,14,17,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7,12, 9)( 8,11,10)(13,17,16)(14,18,15)$ |
| $ 6, 6, 3, 3 $ | $18$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 7,13, 9,16,12,17)( 8,14,10,15,11,18)$ |
| $ 12, 6 $ | $18$ | $12$ | $( 1, 6, 3, 2, 5, 4)( 7,13,10,15,12,17, 8,14, 9,16,11,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $24$ | $3$ | $( 1, 7,13)( 2, 8,14)( 3, 9,16)( 4,10,15)( 5,12,17)( 6,11,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $24$ | $3$ | $( 1, 7,15)( 2, 8,16)( 3, 9,18)( 4,10,17)( 5,12,14)( 6,11,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $24$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3, 9,13)( 4,10,14)( 5,12,16)( 6,11,15)$ |
Group invariants
| Order: | $216=2^{3} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [216, 95] |
| Character table: |
2 3 3 2 2 2 2 2 2 3 3 2 2 3 3 2 2 . . .
3 3 2 2 2 1 2 2 1 3 2 1 1 2 3 1 1 2 2 2
1a 2a 3a 6a 2b 6b 6c 4a 3b 6d 6e 12a 6f 3c 6g 12b 3d 3e 3f
2P 1a 1a 3a 3a 1a 3a 3a 2a 3c 3c 3c 6f 3b 3b 3b 6d 3d 3e 3f
3P 1a 2a 1a 2a 2b 2a 2a 4a 1a 2a 2b 4a 2a 1a 2b 4a 1a 1a 1a
5P 1a 2a 3a 6a 2b 6c 6b 4a 3c 6f 6g 12b 6d 3b 6e 12a 3d 3e 3f
7P 1a 2a 3a 6a 2b 6b 6c 4a 3b 6d 6e 12a 6f 3c 6g 12b 3d 3e 3f
11P 1a 2a 3a 6a 2b 6c 6b 4a 3c 6f 6g 12b 6d 3b 6e 12a 3d 3e 3f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1
X.3 2 2 2 2 . 2 2 . 2 2 . . 2 2 . . -1 -1 -1
X.4 2 2 -1 -1 . -1 -1 . 2 2 . . 2 2 . . 2 -1 -1
X.5 2 2 -1 -1 . -1 -1 . 2 2 . . 2 2 . . -1 -1 2
X.6 2 2 -1 -1 . -1 -1 . 2 2 . . 2 2 . . -1 2 -1
X.7 3 -1 3 -1 -1 -1 -1 1 3 -1 -1 1 -1 3 -1 1 . . .
X.8 3 -1 3 -1 1 -1 -1 -1 3 -1 1 -1 -1 3 1 -1 . . .
X.9 3 3 . . -1 . . -1 B B D D /B /B /D /D . . .
X.10 3 3 . . -1 . . -1 /B /B /D /D B B D D . . .
X.11 3 3 . . 1 . . 1 B B -D -D /B /B -/D -/D . . .
X.12 3 3 . . 1 . . 1 /B /B -/D -/D B B -D -D . . .
X.13 3 -1 . 2 -1 A /A 1 B D D -D /D /B /D -/D . . .
X.14 3 -1 . 2 -1 /A A 1 /B /D /D -/D D B D -D . . .
X.15 3 -1 . 2 1 A /A -1 B D -D D /D /B -/D /D . . .
X.16 3 -1 . 2 1 /A A -1 /B /D -/D /D D B -D D . . .
X.17 6 -2 -3 1 . 1 1 . 6 -2 . . -2 6 . . . . .
X.18 6 -2 . -2 . -A -/A . C -A . . -/A /C . . . . .
X.19 6 -2 . -2 . -/A -A . /C -/A . . -A C . . . . .
A = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
B = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
C = 6*E(3)^2
= -3-3*Sqrt(-3) = -3-3i3
D = -E(3)^2
= (1+Sqrt(-3))/2 = 1+b3
|