Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $10$ | |
| Group : | $C_3^2 : C_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,10,15)(2,14,9,16)(3,5,7,18)(4,6,8,17)(11,12), (1,14)(2,13)(3,12)(4,11)(5,9)(6,10)(15,18)(16,17) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 6: $C_3^2:C_4$ x 2
Degree 9: $C_3^2:C_4$
Low degree siblings
6T10 x 2, 9T9, 12T17 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $9$ | $2$ | $( 3,17)( 4,18)( 5,15)( 6,16)( 7,14)( 8,13)( 9,11)(10,12)$ |
| $ 4, 4, 4, 4, 2 $ | $9$ | $4$ | $( 1, 2)( 3, 9,17,11)( 4,10,18,12)( 5, 7,15,14)( 6, 8,16,13)$ |
| $ 4, 4, 4, 4, 2 $ | $9$ | $4$ | $( 1, 2)( 3,11,17, 9)( 4,12,18,10)( 5,14,15, 7)( 6,13,16, 8)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3,17)( 2, 4,18)( 5, 8, 9)( 6, 7,10)(11,13,15)(12,14,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 6,16)( 2, 5,15)( 3, 7,12)( 4, 8,11)( 9,13,18)(10,14,17)$ |
Group invariants
| Order: | $36=2^{2} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [36, 9] |
| Character table: |
2 2 2 2 2 . .
3 2 . . . 2 2
1a 2a 4a 4b 3a 3b
2P 1a 1a 2a 2a 3a 3b
3P 1a 2a 4b 4a 1a 1a
X.1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1
X.3 1 -1 A -A 1 1
X.4 1 -1 -A A 1 1
X.5 4 . . . 1 -2
X.6 4 . . . -2 1
A = -E(4)
= -Sqrt(-1) = -i
|