Show commands: Magma
                    
            
Group invariants
| Abstract group: | $\PSL(2,16)$ | 
     | |
| Order: | $4080=2^{4} \cdot 3 \cdot 5 \cdot 17$ | 
     | |
| Cyclic: | no | 
     | |
| Abelian: | no | 
     | |
| Solvable: | no | 
     | |
| Nilpotency class: | not nilpotent | 
     | 
Group action invariants
| Degree $n$: | $17$ | 
     | |
| Transitive number $t$: | $6$ | 
     | |
| Parity: | $1$ | 
     | |
| Primitive: | yes | 
     | |
| $\card{\Aut(F/K)}$: | $1$ | 
     | |
| Generators: | $(2,3)(4,9)(5,7)(6,8)(10,14)(11,13)(12,15)(16,17)$, $(1,16)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)$, $(1,6,13,5,4,2,15,10,14,12,3,9,7,11,8)$ | 
     | 
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| $1^{17}$ | $1$ | $1$ | $0$ | $()$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1, 7,10,13, 8, 2, 6,15, 3,17, 5, 9,16, 4,14,11,12)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1, 8, 3,16,12,13,15, 9,11,10, 6, 5,14, 7, 2,17, 4)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1,10, 8, 6, 3, 5,16,14,12, 7,13, 2,15,17, 9, 4,11)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1, 3,12,15,11, 6,14, 2, 4, 8,16,13, 9,10, 5, 7,17)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1, 6,16, 7,15, 4,10, 3,14,13,17,11, 8, 5,12, 2, 9)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1,15,14, 8, 9, 7, 3,11, 2,16,10,17,12, 6, 4,13, 5)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1,16,15,10,14,17, 8,12, 9, 6, 7, 4, 3,13,11, 5, 2)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1,14, 9, 3, 2,10,12, 4, 5,15, 8, 7,11,16,17, 6,13)$ | |
| $3^{5},1^{2}$ | $272$ | $3$ | $10$ | $( 1, 2, 5)( 3, 9,17)( 6,13,16)( 7,12,10)( 8,11,15)$ | |
| $5^{3},1^{2}$ | $272$ | $5$ | $12$ | $( 1,17,11, 6,12)( 2, 3,15,13,10)( 5, 9, 8,16, 7)$ | |
| $5^{3},1^{2}$ | $272$ | $5$ | $12$ | $( 1, 6,17,12,11)( 2,13, 3,10,15)( 5,16, 9, 7, 8)$ | |
| $15,1^{2}$ | $272$ | $15$ | $14$ | $( 1, 8,10,17,16, 2,11, 7, 3, 6, 5,15,12, 9,13)$ | |
| $15,1^{2}$ | $272$ | $15$ | $14$ | $( 1,15, 7,17,13, 5,11,10, 9, 6, 2, 8,12, 3,16)$ | |
| $15,1^{2}$ | $272$ | $15$ | $14$ | $( 1, 7,13,11, 9, 2,12,16,15,17, 5,10, 6, 8, 3)$ | |
| $15,1^{2}$ | $272$ | $15$ | $14$ | $( 1,10,16,11, 3, 5,12,13, 8,17, 2, 7, 6,15, 9)$ | |
| $2^{8},1$ | $255$ | $2$ | $8$ | $( 1, 9)( 2, 7)( 3,15)( 4,16)( 6,12)( 8,14)(10,11)(13,17)$ | 
Malle's constant $a(G)$: $1/8$
Character table
| 1A | 2A | 3A | 5A1 | 5A2 | 15A1 | 15A2 | 15A4 | 15A7 | 17A1 | 17A2 | 17A3 | 17A4 | 17A5 | 17A6 | 17A7 | 17A8 | ||
| Size | 1 | 255 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | |
| 2 P | 1A | 1A | 3A | 5A2 | 5A1 | 15A2 | 15A4 | 15A7 | 15A1 | 17A2 | 17A4 | 17A6 | 17A8 | 17A7 | 17A5 | 17A3 | 17A1 | |
| 3 P | 1A | 2A | 1A | 5A2 | 5A1 | 5A1 | 5A2 | 5A1 | 5A2 | 17A3 | 17A6 | 17A8 | 17A5 | 17A2 | 17A1 | 17A4 | 17A7 | |
| 5 P | 1A | 2A | 3A | 1A | 1A | 3A | 3A | 3A | 3A | 17A5 | 17A7 | 17A2 | 17A3 | 17A8 | 17A4 | 17A1 | 17A6 | |
| 17 P | 1A | 2A | 3A | 5A2 | 5A1 | 15A2 | 15A4 | 15A7 | 15A1 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | |
| Type | ||||||||||||||||||
| 4080.a.1a | R | |||||||||||||||||
| 4080.a.15a1 | R | |||||||||||||||||
| 4080.a.15a2 | R | |||||||||||||||||
| 4080.a.15a3 | R | |||||||||||||||||
| 4080.a.15a4 | R | |||||||||||||||||
| 4080.a.15a5 | R | |||||||||||||||||
| 4080.a.15a6 | R | |||||||||||||||||
| 4080.a.15a7 | R | |||||||||||||||||
| 4080.a.15a8 | R | |||||||||||||||||
| 4080.a.16a | R | |||||||||||||||||
| 4080.a.17a | R | |||||||||||||||||
| 4080.a.17b1 | R | |||||||||||||||||
| 4080.a.17b2 | R | |||||||||||||||||
| 4080.a.17c1 | R | |||||||||||||||||
| 4080.a.17c2 | R | |||||||||||||||||
| 4080.a.17c3 | R | |||||||||||||||||
| 4080.a.17c4 | R | 
Regular extensions
Data not computed