Group action invariants
| Degree $n$ : | $17$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $\PSL(2,16)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,3)(4,9)(5,7)(6,8)(10,14)(11,13)(12,15)(16,17), (1,16)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15), (1,6,13,5,4,2,15,10,14,12,3,9,7,11,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 1, 1 $ | $272$ | $3$ | $( 1,11,13)( 2, 6,17)( 3,16, 8)( 4, 7,12)( 5, 9,15)$ |
| $ 5, 5, 5, 1, 1 $ | $272$ | $5$ | $( 1, 6, 9, 4, 8)( 2, 5,12,16,13)( 3,11,17,15, 7)$ |
| $ 5, 5, 5, 1, 1 $ | $272$ | $5$ | $( 1, 4, 6, 8, 9)( 2,16, 5,13,12)( 3,15,11, 7,17)$ |
| $ 15, 1, 1 $ | $272$ | $15$ | $( 1, 5, 3, 6,12,11, 9,16,17, 4,13,15, 8, 2, 7)$ |
| $ 15, 1, 1 $ | $272$ | $15$ | $( 1,15,16, 6, 7,13, 9, 3, 2, 4,11, 5, 8,17,12)$ |
| $ 15, 1, 1 $ | $272$ | $15$ | $( 1,16, 7, 9, 2,11, 8,12,15, 6,13, 3, 4, 5,17)$ |
| $ 15, 1, 1 $ | $272$ | $15$ | $( 1, 3,12, 9,17,13, 8, 7, 5, 6,11,16, 4,15, 2)$ |
| $ 17 $ | $240$ | $17$ | $( 1,17, 5, 3, 4, 8, 9,10,15, 2, 6,11,14,13,12,16, 7)$ |
| $ 17 $ | $240$ | $17$ | $( 1, 4,15,14, 7, 3,10,11,16, 5, 9, 6,12,17, 8, 2,13)$ |
| $ 17 $ | $240$ | $17$ | $( 1, 5, 4, 9,15, 6,14,12, 7,17, 3, 8,10, 2,11,13,16)$ |
| $ 17 $ | $240$ | $17$ | $( 1,15, 7,10,16, 9,12, 8,13, 4,14, 3,11, 5, 6,17, 2)$ |
| $ 17 $ | $240$ | $17$ | $( 1, 9,14,17,10,13, 5,15,12, 3, 2,16, 4, 6, 7, 8,11)$ |
| $ 17 $ | $240$ | $17$ | $( 1,10,12, 4,11,17,15,16, 8,14, 5, 2, 7, 9,13, 3, 6)$ |
| $ 17 $ | $240$ | $17$ | $( 1,14,10, 5,12, 2, 4, 7,11, 9,17,13,15, 3,16, 6, 8)$ |
| $ 17 $ | $240$ | $17$ | $( 1,12,11,15, 8, 5, 7,13, 6,10, 4,17,16,14, 2, 9, 3)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1 $ | $255$ | $2$ | $( 1, 2)( 3, 9)( 4, 8)( 5,10)( 6, 7)(11,16)(12,14)(15,17)$ |
Group invariants
| Order: | $4080=2^{4} \cdot 3 \cdot 5 \cdot 17$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 4 . . . . . . . . . . . . . . . 4
3 1 1 1 1 1 1 1 1 . . . . . . . . .
5 1 1 1 1 1 1 1 1 . . . . . . . . .
17 1 . . . . . . . 1 1 1 1 1 1 1 1 .
1a 3a 5a 5b 15a 15b 15c 15d 17a 17b 17c 17d 17e 17f 17g 17h 2a
2P 1a 3a 5b 5a 15d 15c 15a 15b 17c 17d 17b 17a 17g 17h 17f 17e 1a
3P 1a 1a 5b 5a 5a 5a 5b 5b 17h 17g 17e 17f 17a 17b 17c 17d 2a
5P 1a 3a 1a 1a 3a 3a 3a 3a 17g 17h 17f 17e 17b 17a 17d 17c 2a
7P 1a 3a 5b 5a 15c 15d 15b 15a 17f 17e 17h 17g 17d 17c 17a 17b 2a
11P 1a 3a 5a 5b 15b 15a 15d 15c 17e 17f 17g 17h 17c 17d 17b 17a 2a
13P 1a 3a 5b 5a 15d 15c 15a 15b 17b 17a 17d 17c 17f 17e 17h 17g 2a
17P 1a 3a 5b 5a 15d 15c 15a 15b 1a 1a 1a 1a 1a 1a 1a 1a 2a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 15 . . . . . . . F K I G H J M L -1
X.3 15 . . . . . . . G I F K L M H J -1
X.4 15 . . . . . . . H J M L I G K F -1
X.5 15 . . . . . . . I G K F M L J H -1
X.6 15 . . . . . . . J H L M G I F K -1
X.7 15 . . . . . . . K F G I J H L M -1
X.8 15 . . . . . . . L M H J F K I G -1
X.9 15 . . . . . . . M L J H K F G I -1
X.10 16 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 .
X.11 17 -1 2 2 -1 -1 -1 -1 . . . . . . . . 1
X.12 17 2 A *A *A *A A A . . . . . . . . 1
X.13 17 2 *A A A A *A *A . . . . . . . . 1
X.14 17 -1 A *A B C D E . . . . . . . . 1
X.15 17 -1 A *A C B E D . . . . . . . . 1
X.16 17 -1 *A A D E C B . . . . . . . . 1
X.17 17 -1 *A A E D B C . . . . . . . . 1
A = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
B = E(15)^7+E(15)^8
C = E(15)^2+E(15)^13
D = E(15)^4+E(15)^11
E = E(15)+E(15)^14
F = -E(17)^3-E(17)^14
G = -E(17)^7-E(17)^10
H = -E(17)-E(17)^16
I = -E(17)^6-E(17)^11
J = -E(17)^4-E(17)^13
K = -E(17)^5-E(17)^12
L = -E(17)^8-E(17)^9
M = -E(17)^2-E(17)^15
|