Show commands: Magma
Group invariants
| Abstract group: | $\PSL(2,16)$ |
| |
| Order: | $4080=2^{4} \cdot 3 \cdot 5 \cdot 17$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $17$ |
| |
| Transitive number $t$: | $6$ |
| |
| Parity: | $1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(2,3)(4,9)(5,7)(6,8)(10,14)(11,13)(12,15)(16,17)$, $(1,16)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)$, $(1,6,13,5,4,2,15,10,14,12,3,9,7,11,8)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| $1^{17}$ | $1$ | $1$ | $0$ | $()$ | |
| $3^{5},1^{2}$ | $272$ | $3$ | $10$ | $( 1,15, 9)( 3,12,14)( 4,13,17)( 5,10, 7)( 6, 8,16)$ | |
| $5^{3},1^{2}$ | $272$ | $5$ | $12$ | $( 1, 8,14,17, 7)( 3, 4, 5,15,16)( 6,12,13,10, 9)$ | |
| $5^{3},1^{2}$ | $272$ | $5$ | $12$ | $( 1,17, 8, 7,14)( 3,15, 4,16, 5)( 6,10,12, 9,13)$ | |
| $15,1^{2}$ | $272$ | $15$ | $14$ | $( 1,12, 5, 8,13,15,14,10,16,17, 9, 3, 7, 6, 4)$ | |
| $15,1^{2}$ | $272$ | $15$ | $14$ | $( 1, 3,10, 8, 4, 9,14, 5, 6,17,15,12, 7,16,13)$ | |
| $15,1^{2}$ | $272$ | $15$ | $14$ | $( 1,10, 4,14, 6,15, 7,13, 3, 8, 9, 5,17,12,16)$ | |
| $15,1^{2}$ | $272$ | $15$ | $14$ | $( 1, 5,13,14,16, 9, 7, 4,12, 8,15,10,17, 3, 6)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1,14, 2, 9,17,15, 4, 8, 7,16,10,11, 3, 5,13,12, 6)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1,17, 7, 3, 6, 9, 8,11,12, 2, 4,10,13,14,15,16, 5)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1, 2,17, 4, 7,10, 3,13, 6,14, 9,15, 8,16,11, 5,12)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1, 7, 6, 8,12, 4,13,15, 5,17, 3, 9,11, 2,10,14,16)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1, 4, 3,14, 8, 5, 2, 7,13, 9,16,12,17,10, 6,15,11)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1, 8,13,17,11,14, 7,12,15, 3, 2,16, 6, 4, 5, 9,10)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1, 3, 8, 2,13,16,17, 6,11, 4,14, 5, 7, 9,12,10,15)$ | |
| $17$ | $240$ | $17$ | $16$ | $( 1,13,11, 7,15, 2, 6, 5,10, 8,17,14,12, 3,16, 4, 9)$ | |
| $2^{8},1$ | $255$ | $2$ | $8$ | $( 1, 9)( 2, 7)( 3,15)( 4,16)( 6,12)( 8,14)(10,11)(13,17)$ |
Malle's constant $a(G)$: $1/8$
Character table
| 1A | 2A | 3A | 5A1 | 5A2 | 15A1 | 15A2 | 15A4 | 15A7 | 17A1 | 17A2 | 17A3 | 17A4 | 17A5 | 17A6 | 17A7 | 17A8 | ||
| Size | 1 | 255 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | |
| 2 P | 1A | 1A | 3A | 5A2 | 5A1 | 15A2 | 15A4 | 15A7 | 15A1 | 17A2 | 17A4 | 17A6 | 17A8 | 17A7 | 17A5 | 17A3 | 17A1 | |
| 3 P | 1A | 2A | 1A | 5A2 | 5A1 | 5A1 | 5A2 | 5A1 | 5A2 | 17A3 | 17A6 | 17A8 | 17A5 | 17A2 | 17A1 | 17A4 | 17A7 | |
| 5 P | 1A | 2A | 3A | 1A | 1A | 3A | 3A | 3A | 3A | 17A5 | 17A7 | 17A2 | 17A3 | 17A8 | 17A4 | 17A1 | 17A6 | |
| 17 P | 1A | 2A | 3A | 5A2 | 5A1 | 15A2 | 15A4 | 15A7 | 15A1 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | |
| Type | ||||||||||||||||||
| 4080.a.1a | R | |||||||||||||||||
| 4080.a.15a1 | R | |||||||||||||||||
| 4080.a.15a2 | R | |||||||||||||||||
| 4080.a.15a3 | R | |||||||||||||||||
| 4080.a.15a4 | R | |||||||||||||||||
| 4080.a.15a5 | R | |||||||||||||||||
| 4080.a.15a6 | R | |||||||||||||||||
| 4080.a.15a7 | R | |||||||||||||||||
| 4080.a.15a8 | R | |||||||||||||||||
| 4080.a.16a | R | |||||||||||||||||
| 4080.a.17a | R | |||||||||||||||||
| 4080.a.17b1 | R | |||||||||||||||||
| 4080.a.17b2 | R | |||||||||||||||||
| 4080.a.17c1 | R | |||||||||||||||||
| 4080.a.17c2 | R | |||||||||||||||||
| 4080.a.17c3 | R | |||||||||||||||||
| 4080.a.17c4 | R |
Regular extensions
Data not computed