Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $994$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $6$ | |
| Generators: | (1,16,8,10,5,12,4,13,2,15,7,9,6,11,3,14), (1,13,6,10,2,14,5,9)(3,12,7,16,4,11,8,15), (1,3)(2,4)(5,7)(6,8)(9,11,13,15,10,12,14,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ 128: $C_2 \wr C_2\wr C_2$ 256: 16T660 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_2 \wr C_2\wr C_2$
Low degree siblings
16T994 x 3, 32T10984 x 2, 32T10985 x 2, 32T10986 x 2, 32T10987 x 2, 32T10988 x 2, 32T10989 x 2, 32T10990 x 2, 32T21597, 32T21641, 32T21927 x 2, 32T21951Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14,10,13)(11,16,12,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8, 5, 4, 2, 7, 6, 3)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 5, 3, 2, 8, 6, 4)( 9,12,14,15,10,11,13,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 8, 5, 4, 2, 7, 6, 3)( 9,12,14,15,10,11,13,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 16 $ | $32$ | $16$ | $( 1,16, 8,10, 5,12, 4,13, 2,15, 7, 9, 6,11, 3,14)$ |
| $ 16 $ | $32$ | $16$ | $( 1,12, 7,14, 5,15, 3,10, 2,11, 8,13, 6,16, 4, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 7)( 4, 8)( 5, 6)(11,16)(12,15)(13,14)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 8, 2, 7)( 3, 6, 4, 5)( 9,11,10,12)(13,16,14,15)$ |
| $ 8, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $8$ | $( 9,15,13,12,10,16,14,11)$ |
| $ 8, 2, 2, 2, 2 $ | $8$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,16,13,11,10,15,14,12)$ |
| $ 8, 4, 4 $ | $8$ | $8$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 4, 4 $ | $8$ | $8$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,12,14,15,10,11,13,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1,16)( 2,15)( 3,14)( 4,13)( 5,12)( 6,11)( 7, 9)( 8,10)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1,12, 2,11)( 3,10, 4, 9)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,10, 5,13, 2, 9, 6,14)( 3,16, 8,12, 4,15, 7,11)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $32$ | $4$ | $( 3, 7)( 4, 8)( 5, 6)( 9,12,10,11)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 8)( 4, 7)( 5, 6)(11,12)(15,16)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 4)( 9,14,10,13)(11,15,12,16)$ |
| $ 8, 2, 2, 2, 2 $ | $32$ | $8$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,11,13,15,10,12,14,16)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1,16, 7,13, 2,15, 8,14)( 3,10, 5,11, 4, 9, 6,12)$ |
| $ 8, 2, 2, 2, 1, 1 $ | $32$ | $8$ | $( 3, 8)( 4, 7)( 5, 6)( 9,15,14,11,10,16,13,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)(11,12)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,14,10,13)(11,15,12,16)$ |
| $ 4, 4, 4, 2, 2 $ | $64$ | $4$ | $( 1,16, 2,15)( 3,10, 8,14)( 4, 9, 7,13)( 5,11)( 6,12)$ |
Group invariants
| Order: | $512=2^{9}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [512, 60839] |
| Character table: Data not available. |