Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $99$ | |
| Group : | $C_2\times C_2^3.C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,3,5,7,10,12,13,15)(2,4,6,8,9,11,14,16), (1,9)(2,10)(3,11)(4,12)(5,6)(7,8)(13,14)(15,16), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $(C_8:C_2):C_2$ x 2, $C_2 \times (C_2^2:C_4)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $C_4\times C_2$, $(C_8:C_2):C_2$ x 2
Low degree siblings
16T72 x 4, 16T99 x 3, 32T60 x 4, 32T61, 32T100Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,14)( 6,13)( 7,16)( 8,15)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5, 6)( 7,16)( 8,15)( 9,10)(13,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3, 5, 7,10,12,13,15)( 2, 4, 6, 8, 9,11,14,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3, 5,15,10,12,13, 7)( 2, 4, 6,16, 9,11,14, 8)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 4, 5, 8,10,11,13,16)( 2, 3, 6, 7, 9,12,14,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 4, 5,16,10,11,13, 8)( 2, 3, 6,15, 9,12,14, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,16)(12,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5,10,13)( 2, 6, 9,14)( 3, 7,12,15)( 4, 8,11,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5,10,13)( 2, 6, 9,14)( 3,15,12, 7)( 4,16,11, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6,10,14)( 2, 5, 9,13)( 3, 8,12,16)( 4, 7,11,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6,10,14)( 2, 5, 9,13)( 3,16,12, 8)( 4,15,11, 7)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7,13,12,10,15, 5, 3)( 2, 8,14,11, 9,16, 6, 4)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 5,12,10,15,13, 3)( 2, 8, 6,11, 9,16,14, 4)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8,13,11,10,16, 5, 4)( 2, 7,14,12, 9,15, 6, 3)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8, 5,11,10,16,13, 4)( 2, 7, 6,12, 9,15,14, 3)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,13)( 6,14)( 7,15)( 8,16)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 92] |
| Character table: Data not available. |