Properties

Label 16T99
Order \(64\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $C_2\times C_2^3.C_4$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $99$
Group :  $C_2\times C_2^3.C_4$
Parity:  $1$
Primitive:  No
Nilpotency class:  $3$
Generators:  (1,3,5,7,10,12,13,15)(2,4,6,8,9,11,14,16), (1,9)(2,10)(3,11)(4,12)(5,6)(7,8)(13,14)(15,16), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$
32:  $(C_8:C_2):C_2$ x 2, $C_2 \times (C_2^2:C_4)$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_4$ x 2, $C_2^2$

Degree 8: $C_4\times C_2$, $(C_8:C_2):C_2$ x 2

Low degree siblings

16T72 x 4, 16T99 x 3, 32T60 x 4, 32T61, 32T100

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $2$ $( 5,13)( 6,14)( 7,15)( 8,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 3,12)( 4,11)( 7,15)( 8,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 2)( 3, 4)( 5,14)( 6,13)( 7,16)( 8,15)( 9,10)(11,12)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 2)( 3,11)( 4,12)( 5, 6)( 7,16)( 8,15)( 9,10)(13,14)$
$ 8, 8 $ $4$ $8$ $( 1, 3, 5, 7,10,12,13,15)( 2, 4, 6, 8, 9,11,14,16)$
$ 8, 8 $ $4$ $8$ $( 1, 3, 5,15,10,12,13, 7)( 2, 4, 6,16, 9,11,14, 8)$
$ 8, 8 $ $4$ $8$ $( 1, 4, 5, 8,10,11,13,16)( 2, 3, 6, 7, 9,12,14,15)$
$ 8, 8 $ $4$ $8$ $( 1, 4, 5,16,10,11,13, 8)( 2, 3, 6,15, 9,12,14, 7)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,16)(12,15)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 5,10,13)( 2, 6, 9,14)( 3, 7,12,15)( 4, 8,11,16)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 5,10,13)( 2, 6, 9,14)( 3,15,12, 7)( 4,16,11, 8)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,13)(10,14)(11,15)(12,16)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 6,10,14)( 2, 5, 9,13)( 3, 8,12,16)( 4, 7,11,15)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 6,10,14)( 2, 5, 9,13)( 3,16,12, 8)( 4,15,11, 7)$
$ 8, 8 $ $4$ $8$ $( 1, 7,13,12,10,15, 5, 3)( 2, 8,14,11, 9,16, 6, 4)$
$ 8, 8 $ $4$ $8$ $( 1, 7, 5,12,10,15,13, 3)( 2, 8, 6,11, 9,16,14, 4)$
$ 8, 8 $ $4$ $8$ $( 1, 8,13,11,10,16, 5, 4)( 2, 7,14,12, 9,15, 6, 3)$
$ 8, 8 $ $4$ $8$ $( 1, 8, 5,11,10,16,13, 4)( 2, 7, 6,12, 9,15,14, 3)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,13)( 6,14)( 7,15)( 8,16)$

Group invariants

Order:  $64=2^{6}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [64, 92]
Character table: Data not available.