Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $942$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $6$ | |
| Generators: | (1,5)(2,6)(3,7,4,8)(9,13,11,15)(10,14,12,16), (1,5,13,9,3,8,15,11,2,6,14,10,4,7,16,12), (1,3)(2,4)(5,8)(6,7)(11,12)(15,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ 64: $((C_8 : C_2):C_2):C_2$ x 2, 16T76 128: 16T227 256: 16T567 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T942 x 3, 32T10688 x 2, 32T10689 x 2, 32T10690 x 2, 32T10691 x 2, 32T10692 x 2, 32T10693 x 2, 32T10694 x 2, 32T21132 x 2, 32T21136 x 2, 32T25895 x 2, 32T26102Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 1, 2)( 3, 4)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 4)( 7, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 4, 2, 3)( 5, 6)( 7, 8)( 9,10)(11,12)(13,16,14,15)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 1, 4, 2, 3)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 2, 2 $ | $32$ | $4$ | $( 1, 5)( 2, 6)( 3, 7, 4, 8)( 9,13,11,15)(10,14,12,16)$ |
| $ 4, 4, 4, 2, 2 $ | $32$ | $4$ | $( 1, 5)( 2, 6)( 3, 8, 4, 7)( 9,15,11,13)(10,16,12,14)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,16, 4,14, 2,15, 3,13)( 5,11, 7, 9, 6,12, 8,10)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,15, 4,13, 2,16, 3,14)( 5,11, 7, 9, 6,12, 8,10)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1,14, 2,13)( 3,15, 4,16)( 5, 9, 6,10)( 7,11, 8,12)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $4$ | $( 5,11, 6,12)( 7,10, 8, 9)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 2)( 3, 4)( 5,11, 6,12)( 7,10, 8, 9)(13,14)(15,16)$ |
| $ 8, 2, 2, 2, 1, 1 $ | $32$ | $8$ | $( 3, 4)( 5, 9, 8,11, 6,10, 7,12)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 4, 2, 3)( 5,12, 6,11)( 7, 9, 8,10)(13,16,14,15)$ |
| $ 16 $ | $32$ | $16$ | $( 1, 5,15, 9, 4, 8,13,11, 2, 6,16,10, 3, 7,14,12)$ |
| $ 16 $ | $32$ | $16$ | $( 1, 5,13, 9, 3, 8,15,11, 2, 6,14,10, 4, 7,16,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 4)( 7, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 1, 4, 2, 3)( 5, 6)( 7, 8)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 2, 2 $ | $32$ | $4$ | $( 1, 5)( 2, 6)( 3, 7, 4, 8)( 9,14,11,16)(10,13,12,15)$ |
| $ 4, 4, 4, 2, 2 $ | $32$ | $4$ | $( 1, 5)( 2, 6)( 3, 8, 4, 7)( 9,16,11,14)(10,15,12,13)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,16, 3,13, 2,15, 4,14)( 5,11, 8,10, 6,12, 7, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1,14)( 2,13)( 3,15)( 4,16)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 5,11)( 6,12)( 7,10)( 8, 9)(13,14)(15,16)$ |
| $ 8, 2, 2, 2, 1, 1 $ | $32$ | $8$ | $( 3, 4)( 5, 9, 7,12, 6,10, 8,11)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 4, 2, 3)( 5,12)( 6,11)( 7, 9)( 8,10)(13,15,14,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,12)( 6,11)( 7, 9)( 8,10)(13,16,14,15)$ |
| $ 16 $ | $32$ | $16$ | $( 1, 5,15,10, 4, 8,13,12, 2, 6,16, 9, 3, 7,14,11)$ |
| $ 16 $ | $32$ | $16$ | $( 1, 5,13,10, 3, 8,15,12, 2, 6,14, 9, 4, 7,16,11)$ |
Group invariants
| Order: | $512=2^{9}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [512, 60668] |
| Character table: Data not available. |