Properties

Label 16T919
Order \(512\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $919$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (9,13)(10,14), (1,13,2,14)(3,11,4,12)(5,10,6,9)(7,16,8,15), (1,2)(3,4)(5,6)(7,8), (1,4)(2,3)(5,8)(6,7)(9,14)(10,13)(11,16)(12,15)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 42, $C_2^4$
32:  $C_2^2 \wr C_2$ x 28, $C_2^2 \times D_4$ x 7
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T105 x 7
128:  $C_2 \wr C_2\wr C_2$ x 4, 16T241, 16T245, 16T325
256:  16T509 x 2, 32T4223

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$ x 3

Degree 8: $C_2^2 \wr C_2$, $C_2 \wr C_2\wr C_2$ x 2

Low degree siblings

16T919 x 255, 32T10570 x 64, 32T10571 x 256, 32T10572 x 128, 32T10573 x 64, 32T10574 x 128, 32T10575 x 64, 32T10576 x 64, 32T10577 x 64, 32T10578 x 64, 32T10579 x 64, 32T17282 x 32, 32T17424 x 32

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 65 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $512=2^{9}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [512, 418967]
Character table: Data not available.