Properties

Label 16T905
Order \(512\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $905$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,6,4,8,2,5,3,7)(9,15,12,13,10,16,11,14), (9,10)(11,12)(13,14)(15,16), (1,12,4,10,2,11,3,9)(5,13,7,16,6,14,8,15), (7,8)(13,15)(14,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 12, $C_2^3$ x 15
16:  $D_4\times C_2$ x 18, $C_2^4$
32:  $C_2^2 \wr C_2$ x 4, $C_2^2 \times D_4$ x 3
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T105
128:  $C_2 \wr C_2\wr C_2$ x 2, 16T245
256:  16T509

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T905 x 7, 32T10487 x 4, 32T10488 x 4, 32T10489 x 4, 32T10490 x 8, 32T10491 x 16, 32T10492 x 8, 32T10493 x 4, 32T10494 x 4, 32T10495 x 4, 32T10496 x 4, 32T20860 x 4, 32T22216 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has exactly one arithmetically equivalent field.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 5, 6)( 7, 8)(13,14)(15,16)$
$ 8, 8 $ $16$ $8$ $( 1, 6, 4, 8, 2, 5, 3, 7)( 9,15,12,13,10,16,11,14)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 4)( 7, 8)( 9,12)(10,11)(13,15)(14,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 9,10)(11,12)(13,14)(15,16)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 5, 6)( 7, 8)( 9,10)(11,12)$
$ 8, 8 $ $16$ $8$ $( 1, 6, 4, 8, 2, 5, 3, 7)( 9,16,12,14,10,15,11,13)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 4)( 7, 8)( 9,11)(10,12)(13,16)(14,15)$
$ 8, 8 $ $8$ $8$ $( 1,12, 4,10, 2,11, 3, 9)( 5,13, 7,16, 6,14, 8,15)$
$ 8, 8 $ $8$ $8$ $( 1,12, 4,10, 2,11, 3, 9)( 5,14, 7,15, 6,13, 8,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1,13)( 2,14)( 3,15)( 4,16)( 5,10)( 6, 9)( 7,11)( 8,12)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1,16, 2,15)( 3,13, 4,14)( 5,11, 6,12)( 7, 9, 8,10)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $16$ $2$ $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15)( 6,16)( 7,14)( 8,13)$
$ 8, 8 $ $16$ $8$ $( 1,15, 3,13, 2,16, 4,14)( 5,12, 7, 9, 6,11, 8,10)$
$ 8, 8 $ $8$ $8$ $( 1,11, 3,10, 2,12, 4, 9)( 5,14, 8,16, 6,13, 7,15)$
$ 8, 8 $ $8$ $8$ $( 1,11, 3,10, 2,12, 4, 9)( 5,13, 8,15, 6,14, 7,16)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1,14, 2,13)( 3,16, 4,15)( 5, 9, 6,10)( 7,12, 8,11)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1,15)( 2,16)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)( 8, 9)$
$ 4, 4, 4, 4 $ $16$ $4$ $( 1,10, 2, 9)( 3,11, 4,12)( 5,16, 6,15)( 7,13, 8,14)$
$ 8, 8 $ $16$ $8$ $( 1,16, 4,13, 2,15, 3,14)( 5,11, 8, 9, 6,12, 7,10)$
$ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $4$ $( 5, 8, 6, 7)(13,15,14,16)$
$ 4, 4, 2, 2, 2, 2 $ $4$ $4$ $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,10)(11,12)(13,16,14,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,15)(10,16)(11,14)(12,13)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 8, 2, 7)( 3, 6, 4, 5)( 9,13,10,14)(11,15,12,16)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(15,16)$
$ 4, 4, 2, 2, 1, 1, 1, 1 $ $8$ $4$ $( 5, 8, 6, 7)( 9,10)(11,12)(13,16,14,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $8$ $2$ $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,16)(10,15)(11,13)(12,14)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 8, 2, 7)( 3, 6, 4, 5)( 9,14,10,13)(11,16,12,15)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,14)$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $8$ $2$ $( 7, 8)(13,15)(14,16)$
$ 2, 2, 2, 2, 2, 2, 2, 1, 1 $ $8$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 9,10)(11,12)(13,16)(14,15)$
$ 4, 4, 2, 2, 2, 1, 1 $ $16$ $4$ $( 1, 4, 2, 3)( 5, 7)( 6, 8)( 9,12,10,11)(15,16)$
$ 4, 4, 4, 2, 2 $ $32$ $4$ $( 1, 6, 4, 8)( 2, 5, 3, 7)( 9,15,10,16)(11,14)(12,13)$
$ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $8$ $2$ $( 7, 8)( 9,10)(11,12)(13,16)(14,15)$
$ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $8$ $2$ $( 1, 2)( 3, 4)( 5, 6)(13,15)(14,16)$
$ 4, 4, 2, 2, 2, 1, 1 $ $16$ $4$ $( 1, 4, 2, 3)( 5, 7)( 6, 8)( 9,11,10,12)(13,14)$
$ 4, 4, 4, 2, 2 $ $32$ $4$ $( 1, 6, 4, 8)( 2, 5, 3, 7)( 9,16,10,15)(11,13)(12,14)$
$ 8, 2, 2, 2, 2 $ $32$ $8$ $( 1,12, 4,10, 2,11, 3, 9)( 5,13)( 6,14)( 7,15)( 8,16)$
$ 4, 4, 4, 2, 2 $ $32$ $4$ $( 1,13, 3,15)( 2,14, 4,16)( 5,10)( 6, 9)( 7,12, 8,11)$
$ 8, 4, 4 $ $32$ $8$ $( 1,11, 3,10, 2,12, 4, 9)( 5,14, 6,13)( 7,16, 8,15)$
$ 4, 4, 4, 2, 2 $ $32$ $4$ $( 1,14, 4,15)( 2,13, 3,16)( 5, 9, 6,10)( 7,11)( 8,12)$

Group invariants

Order:  $512=2^{9}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [512, 420058]
Character table: Data not available.