Properties

Label 16T876
Order \(512\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $876$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,8,5,4)(2,7,6,3)(9,13)(10,14), (1,15,4,9,2,16,3,10)(5,12,8,14,6,11,7,13), (1,11,7,13,5,16,3,10)(2,12,8,14,6,15,4,9)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$
32:  $C_4\wr C_2$ x 4, $C_2^2 \wr C_2$, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T111 x 2, 32T239
128:  $C_2 \wr C_2\wr C_2$ x 2, 16T208, 16T211, 16T222, 16T345 x 2
256:  32T3766, 32T4357 x 2

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_4\wr C_2$, $C_2 \wr C_2\wr C_2$ x 2

Low degree siblings

16T876 x 31, 32T10321 x 16, 32T10322 x 16, 32T10323 x 8, 32T10324 x 16, 32T10325 x 8, 32T18737 x 4, 32T18742 x 4, 32T18745 x 8, 32T21150 x 4, 32T21158 x 8, 32T21160 x 8, 32T21178 x 16, 32T21446 x 8, 32T21448 x 16

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 65 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $512=2^{9}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [512, 46818]
Character table: Data not available.