Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $875$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $5$ | |
| Generators: | (1,13,5,11)(2,14,6,12)(3,16,7,10)(4,15,8,9), (1,6,3,8,2,5,4,7)(9,12)(10,11)(13,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 6, $C_2^2$ 8: $D_{4}$ x 3, $C_4\times C_2$ x 3, $Q_8$ 16: $C_2^2:C_4$ x 3, $C_4^2$, $C_4:C_4$ x 3 32: $C_2^3 : C_4 $ x 6, 32T41 64: 16T77 x 3 128: 16T323 256: 32T7258 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_2^3 : C_4 $
Low degree siblings
16T875 x 3, 32T10318 x 2, 32T10319 x 2, 32T10320 x 2, 32T21826 x 2, 32T21827 x 2, 32T26493, 32T33257 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1,13, 5,11)( 2,14, 6,12)( 3,16, 7,10)( 4,15, 8, 9)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1,11, 5,13)( 2,12, 6,14)( 3,10, 7,16)( 4, 9, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 4)( 7, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,13,10,14)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,15,10,16)(11,14,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,13, 5,11, 2,14, 6,12)( 3,15, 7, 9, 4,16, 8,10)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,11, 6,14, 2,12, 5,13)( 3, 9, 8,16, 4,10, 7,15)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,16,10,15)(11,14,12,13)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,10)(11,12)$ |
| $ 8, 4, 1, 1, 1, 1 $ | $16$ | $8$ | $( 5, 7, 6, 8)( 9,13,11,15,10,14,12,16)$ |
| $ 8, 4, 2, 2 $ | $16$ | $8$ | $( 1, 2)( 3, 4)( 5, 8, 6, 7)( 9,14,11,16,10,13,12,15)$ |
| $ 8, 2, 2, 2, 1, 1 $ | $32$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,11)(10,12)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1,13)( 2,14)( 3,16, 4,15)( 5,10, 6, 9)( 7,12)( 8,11)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1,11, 4, 9)( 2,12, 3,10)( 5,16, 8,13)( 6,15, 7,14)$ |
| $ 8, 2, 2, 2, 1, 1 $ | $32$ | $8$ | $( 3, 4)( 5, 8)( 6, 7)( 9,13,12,15,10,14,11,16)$ |
| $ 8, 4, 2, 2 $ | $16$ | $8$ | $( 1, 5, 4, 7, 2, 6, 3, 8)( 9,11,10,12)(13,14)(15,16)$ |
| $ 8, 4, 1, 1, 1, 1 $ | $16$ | $8$ | $( 1, 6, 4, 8, 2, 5, 3, 7)( 9,12,10,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1,13, 2,14)( 3,15)( 4,16)( 5, 9)( 6,10)( 7,12, 8,11)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1,11, 3, 9)( 2,12, 4,10)( 5,15, 7,14)( 6,16, 8,13)$ |
Group invariants
| Order: | $512=2^{9}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [512, 1645] |
| Character table: Data not available. |