Properties

Label 16T860
Order \(512\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $860$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,6)(2,5)(3,7)(4,8)(9,14)(10,13)(11,16)(12,15), (1,8,2,7)(3,6,4,5)(9,12,10,11)(13,15,14,16), (1,10,3,15)(2,9,4,16)(5,11,7,14)(6,12,8,13), (9,10)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 42, $C_2^4$
32:  $C_2^2 \wr C_2$ x 28, $C_2^2 \times D_4$ x 7
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T105 x 7
128:  16T241, 16T245, 16T325
256:  32T4223

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$, $D_{4}$ x 2

Degree 8: $D_4$

Low degree siblings

16T819 x 8, 16T843 x 8, 16T850 x 4, 16T860 x 3, 16T879 x 8, 32T9894 x 8, 32T9895 x 8, 32T9896 x 8, 32T9897 x 16, 32T9898 x 8, 32T9899 x 4, 32T9900 x 8, 32T9901 x 4, 32T9902 x 8, 32T10114 x 8, 32T10115 x 8, 32T10116 x 4, 32T10117 x 4, 32T10118 x 8, 32T10159 x 4, 32T10160 x 8, 32T10161 x 2, 32T10162 x 4, 32T10163 x 4, 32T10164 x 2, 32T10165 x 4, 32T10235 x 4, 32T10236 x 2, 32T10237 x 4, 32T10238 x 4, 32T10239 x 2, 32T10240 x 4, 32T10241 x 8, 32T10242 x 4, 32T10243 x 4, 32T10244 x 8, 32T10245 x 4, 32T10246 x 4, 32T10247 x 8, 32T10348 x 8, 32T10349 x 4, 32T10350 x 8, 32T10351 x 4, 32T10352 x 4, 32T10353 x 4, 32T10354 x 8, 32T10355 x 4, 32T10356 x 4, 32T19764 x 2, 32T20043 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 53 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $512=2^{9}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [512, 418986]
Character table: Data not available.