Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $859$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $6$ | |
| Generators: | (1,3,2,4)(5,7)(6,8)(9,12,10,11)(15,16), (1,7,12,14,2,8,11,13)(3,5,10,16,4,6,9,15), (1,5,11,15,2,6,12,16)(3,8,9,14,4,7,10,13) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ 64: $((C_8 : C_2):C_2):C_2$ x 2, 16T76 128: 16T227 256: 16T567 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $((C_8 : C_2):C_2):C_2$
Low degree siblings
16T859 x 7, 32T10225 x 4, 32T10226 x 4, 32T10227 x 8, 32T10228 x 16, 32T10229 x 4, 32T10230 x 4, 32T10231 x 8, 32T10232 x 4, 32T10233 x 4, 32T10234 x 4, 32T20547 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $16$ | $4$ | $( 1, 3, 2, 4)( 5, 7)( 6, 8)( 9,12,10,11)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 1, 3)( 2, 4)( 5, 6)(11,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 9,11)(10,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,11)(10,12)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5, 8, 6, 7)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5, 8, 6, 7)( 9,10)(11,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1,12, 2,11)( 3,10, 4, 9)( 5,16, 6,15)( 7,14, 8,13)$ |
| $ 8, 2, 2, 2, 2 $ | $32$ | $8$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,15, 7,14, 6,16, 8,13)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,11, 3,10, 2,12, 4, 9)( 5,13, 7,15, 6,14, 8,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1,12, 3, 9, 2,11, 4,10)( 5,13, 7,15, 6,14, 8,16)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1, 7,12,14, 2, 8,11,13)( 3, 5,10,16, 4, 6, 9,15)$ |
| $ 16 $ | $32$ | $16$ | $( 1, 5,11,13, 3, 7,10,15, 2, 6,12,14, 4, 8, 9,16)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,14,11, 7, 2,13,12, 8)( 3,16, 9, 5, 4,15,10, 6)$ |
| $ 16 $ | $32$ | $16$ | $( 1,14, 9, 7, 4,16,12, 6, 2,13,10, 8, 3,15,11, 5)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $16$ | $4$ | $( 1, 3, 2, 4)( 5, 7)( 6, 8)( 9,11,10,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 1, 3)( 2, 4)( 5, 6)( 9,10)(13,15)(14,16)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 5, 8, 6, 7)( 9,10)(11,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1,12)( 2,11)( 3,10)( 4, 9)( 5,16)( 6,15)( 7,14)( 8,13)$ |
| $ 8, 4, 4 $ | $32$ | $8$ | $( 1,10, 2, 9)( 3,11, 4,12)( 5,15, 8,13, 6,16, 7,14)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,11, 4, 9, 2,12, 3,10)( 5,13, 8,16, 6,14, 7,15)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1, 7,12,13, 2, 8,11,14)( 3, 5,10,15, 4, 6, 9,16)$ |
| $ 16 $ | $32$ | $16$ | $( 1, 5,11,14, 3, 7,10,16, 2, 6,12,13, 4, 8, 9,15)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,14,12, 7, 2,13,11, 8)( 3,16,10, 5, 4,15, 9, 6)$ |
| $ 16 $ | $32$ | $16$ | $( 1,14,10, 7, 4,16,11, 6, 2,13, 9, 8, 3,15,12, 5)$ |
Group invariants
| Order: | $512=2^{9}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [512, 60663] |
| Character table: Data not available. |