Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $841$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $6$ | |
| Generators: | (1,14,4,15,6,10,7,12,2,13,3,16,5,9,8,11), (1,12,8,10,6,15,3,13,2,11,7,9,5,16,4,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ 32: $(C_8:C_2):C_2$, $C_2^3 : C_4 $, $C_2^2 : C_8$ 64: $((C_8 : C_2):C_2):C_2$ x 2, 16T84 128: 16T228 256: 16T565 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8$
Low degree siblings
16T841 x 3, 16T917 x 4, 32T10098 x 8, 32T10099 x 2, 32T10100 x 4, 32T10101 x 8, 32T10102 x 8, 32T10103 x 2, 32T10104 x 8, 32T10105 x 4, 32T10106 x 4, 32T10107 x 4, 32T10108 x 4, 32T10109 x 4, 32T10110 x 4, 32T10559 x 4, 32T10560 x 4, 32T10561 x 2, 32T10562 x 4, 32T10563 x 4, 32T10564 x 4, 32T10565 x 2, 32T10566 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,14,10,13)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 4, 6, 7, 2, 3, 5, 8)( 9,11,14,15,10,12,13,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 7, 5, 4, 2, 8, 6, 3)( 9,15,13,11,10,16,14,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(13,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,14,10,13)(11,16,12,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)$ |
| $ 16 $ | $32$ | $16$ | $( 1,14, 4,15, 6,10, 7,12, 2,13, 3,16, 5, 9, 8,11)$ |
| $ 16 $ | $32$ | $16$ | $( 1,10, 3,11, 6,13, 8,15, 2, 9, 4,12, 5,14, 7,16)$ |
| $ 16 $ | $32$ | $16$ | $( 1,15, 7,13, 5,11, 4,10, 2,16, 8,14, 6,12, 3, 9)$ |
| $ 16 $ | $32$ | $16$ | $( 1,12, 8,10, 5,15, 3,14, 2,11, 7, 9, 6,16, 4,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 4, 6, 8, 2, 3, 5, 7)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 7, 6, 4, 2, 8, 5, 3)( 9,15,14,11,10,16,13,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1, 4, 6, 7, 2, 3, 5, 8)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1, 7, 5, 4, 2, 8, 6, 3)( 9,15,14,11,10,16,13,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 5, 6)( 9,10)(11,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 16 $ | $32$ | $16$ | $( 1,14, 3,16, 6,10, 7,12, 2,13, 4,15, 5, 9, 8,11)$ |
| $ 16 $ | $32$ | $16$ | $( 1,10, 3,11, 6,13, 7,16, 2, 9, 4,12, 5,14, 8,15)$ |
| $ 16 $ | $32$ | $16$ | $( 1,15, 8,14, 5,11, 4,10, 2,16, 7,13, 6,12, 3, 9)$ |
| $ 16 $ | $32$ | $16$ | $( 1,12, 8,10, 5,15, 4,13, 2,11, 7, 9, 6,16, 3,14)$ |
Group invariants
| Order: | $512=2^{9}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [512, 1714] |
| Character table: Data not available. |