Properties

Label 16T839
Order \(512\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $839$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (9,10)(11,12)(13,14)(15,16), (3,4)(7,8)(11,12)(15,16), (1,4,2,3)(5,7,6,8), (1,9)(2,10)(3,12)(4,11)(5,15,6,16)(7,13,8,14), (1,7,2,8)(3,6,4,5)(11,12)(15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 42, $C_2^4$
32:  $C_2^2 \wr C_2$ x 28, $C_2^2 \times D_4$ x 7
64:  16T105 x 7
128:  16T223, 16T239, 16T325
256:  32T3930

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$ x 3

Degree 8: $C_2^2 \wr C_2$

Low degree siblings

16T839 x 15, 16T908 x 8, 32T10073 x 8, 32T10074 x 8, 32T10075 x 8, 32T10076 x 16, 32T10077 x 8, 32T10078 x 8, 32T10079 x 8, 32T10080 x 8, 32T10081 x 8, 32T10082 x 8, 32T10083 x 8, 32T10084 x 8, 32T10085 x 8, 32T10086 x 8, 32T10087 x 8, 32T10505 x 4, 32T10506 x 8, 32T10507 x 8, 32T10508 x 4, 32T10509 x 4, 32T10510 x 8, 32T10511 x 4, 32T10512 x 4, 32T10513 x 4, 32T10514 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 53 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $512=2^{9}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [512, 419042]
Character table: Data not available.