Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $817$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $6$ | |
| Generators: | (1,10,4,11,5,14,8,16)(2,9,3,12,6,13,7,15), (1,10,4,12,5,13,7,15)(2,9,3,11,6,14,8,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ 16: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ 32: $(C_8:C_2):C_2$, $C_2^3 : C_4 $, $C_2^2 : C_8$ 64: $((C_8 : C_2):C_2):C_2$ x 2, 16T84 128: 16T228 256: 16T565 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8$
Low degree siblings
16T817 x 3, 16T840 x 4, 16T924 x 8, 32T9872 x 8, 32T9873 x 4, 32T9874 x 2, 32T9875 x 4, 32T9876 x 4, 32T9877 x 2, 32T9878 x 8, 32T9879 x 8, 32T9880 x 8, 32T9881 x 4, 32T9882 x 4, 32T9883 x 4, 32T9884 x 4, 32T10088 x 2, 32T10089 x 8, 32T10090 x 2, 32T10091 x 2, 32T10092 x 4, 32T10093 x 4, 32T10094 x 2, 32T10095 x 2, 32T10096 x 4, 32T10097 x 2, 32T10599 x 4, 32T10600 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,12,13,15)(10,11,14,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 8, 5, 4)( 2, 7, 6, 3)( 9,15,13,12)(10,16,14,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,10, 4,11, 5,14, 8,16)( 2, 9, 3,12, 6,13, 7,15)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,14, 4,16, 5,10, 8,11)( 2,13, 3,15, 6, 9, 7,12)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,11, 8,10, 5,16, 4,14)( 2,12, 7, 9, 6,15, 3,13)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,16, 8,14, 5,11, 4,10)( 2,15, 7,13, 6,12, 3, 9)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 4, 5, 7)( 2, 3, 6, 8)( 9,12,13,16)(10,11,14,15)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 8, 6, 4)( 2, 7, 5, 3)( 9,15,14,12)(10,16,13,11)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,12,13,16)(10,11,14,15)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1, 8, 5, 4)( 2, 7, 6, 3)( 9,15,14,12)(10,16,13,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,13,10,14)(11,16,12,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 1, 2)( 5, 6)(13,14)(15,16)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,10, 4,11, 5,14, 7,15)( 2, 9, 3,12, 6,13, 8,16)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,14, 3,15, 5,10, 8,11)( 2,13, 4,16, 6, 9, 7,12)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,11, 8,10, 5,16, 3,13)( 2,12, 7, 9, 6,15, 4,14)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1,16, 7,13, 5,11, 4,10)( 2,15, 8,14, 6,12, 3, 9)$ |
Group invariants
| Order: | $512=2^{9}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [512, 1710] |
| Character table: Data not available. |