Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $813$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,10)(2,9)(3,11,4,12)(5,15)(6,16)(7,14,8,13), (1,4)(2,3)(5,6)(7,8)(11,12)(13,15,14,16), (1,5)(2,6)(3,7,4,8)(9,15,10,16)(11,13)(12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 4, $C_4\times C_2^2$ 32: $C_2^3 : C_4 $ x 4, $C_4^2:C_2$ x 2, $C_2 \times (C_2^2:C_4)$, 16T37 x 4 64: 16T76 x 2, 32T197 128: 16T212 x 2, 16T274 256: 32T3799 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
16T813, 16T833 x 2, 16T874 x 4, 32T9839 x 2, 32T9840 x 2, 32T9841, 32T9842 x 4, 32T9843, 32T9998 x 2, 32T9999, 32T10000, 32T10001 x 2, 32T10316 x 2, 32T10317 x 2, 32T19556, 32T19557, 32T19558, 32T19559, 32T19829, 32T19830, 32T20150, 32T20151, 32T26475 x 2, 32T28630, 32T33256 x 2, 32T33746, 32T33771Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 1, 2)( 3, 4)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1,10)( 2, 9)( 3,11, 4,12)( 5,15)( 6,16)( 7,14, 8,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1,10)( 2, 9)( 3,12, 4,11)( 5,15)( 6,16)( 7,13, 8,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7, 8)( 9,10)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1,10)( 2, 9)( 3,11, 4,12)( 5,15, 6,16)( 7,14)( 8,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1,10)( 2, 9)( 3,12, 4,11)( 5,15, 6,16)( 7,13)( 8,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $16$ | $4$ | $( 5, 8)( 6, 7)( 9,11,10,12)(15,16)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1 $ | $16$ | $4$ | $( 3, 4)( 5, 7, 6, 8)( 9,12)(10,11)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1,10, 3,11)( 2, 9, 4,12)( 5,13, 7,16)( 6,14, 8,15)$ |
| $ 4, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $16$ | $4$ | $( 5, 8)( 6, 7)( 9,11,10,12)(13,14)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1 $ | $16$ | $4$ | $( 1, 2)( 5, 7, 6, 8)( 9,12)(10,11)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $32$ | $4$ | $( 1,10, 3,11)( 2, 9, 4,12)( 5,13, 8,15)( 6,14, 7,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 7, 4, 8)( 9,15,10,16)(11,13)(12,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 8, 4, 7)( 9,15,10,16)(11,14)(12,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1,15)( 2,16)( 3,14)( 4,13)( 5,10, 6, 9)( 7,12, 8,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,11)( 6,12)( 7,10)( 8, 9)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 7, 4, 8)( 9,16)(10,15)(11,14,12,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 5)( 2, 6)( 3, 8, 4, 7)( 9,16)(10,15)(11,13,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1,15)( 2,16)( 3,14)( 4,13)( 5,10)( 6, 9)( 7,12)( 8,11)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,15, 2,16)( 3,14, 4,13)( 5,10, 6, 9)( 7,12, 8,11)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,11, 6,12)( 7,10, 8, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1,14)( 2,13)( 3,15)( 4,16)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1, 8, 3, 6, 2, 7, 4, 5)( 9,16,11,13,10,15,12,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1,13)( 2,14)( 3,16, 4,15)( 5,10)( 6, 9)( 7,12, 8,11)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1, 8, 3, 6, 2, 7, 4, 5)( 9,15,12,13,10,16,11,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1,13)( 2,14)( 3,16, 4,15)( 5,10, 6, 9)( 7,12)( 8,11)$ |
Group invariants
| Order: | $512=2^{9}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [512, 42712] |
| Character table: Data not available. |