Properties

Label 16T797
Order \(512\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $797$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,6)(2,5)(3,7)(4,8)(9,14)(10,13)(11,16)(12,15), (1,8,2,7)(3,6,4,5)(9,12,10,11)(13,15,14,16), (9,10)(13,14), (1,16,4,9)(2,15,3,10)(5,11,7,14)(6,12,8,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_4$ x 8, $C_2^2$ x 35
8:  $D_{4}$ x 24, $C_4\times C_2$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 36, $C_2^2:C_4$ x 48, $C_4\times C_2^2$ x 14, $C_2^4$
32:  $C_2^2 \wr C_2$ x 16, $C_2 \times (C_2^2:C_4)$ x 36, $C_2^2 \times D_4$ x 6, 32T34
64:  16T79 x 8, 16T105 x 4, 32T262 x 3
128:  16T199 x 2, 32T1149
256:  32T3478

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_4$ x 2, $C_2^2$

Degree 8: $C_4\times C_2$

Low degree siblings

16T785 x 8, 16T787 x 4, 16T791 x 8, 16T797 x 3, 32T9617 x 16, 32T9618 x 8, 32T9619 x 8, 32T9620 x 8, 32T9621 x 4, 32T9622 x 8, 32T9623 x 8, 32T9624 x 4, 32T9625 x 8, 32T9640 x 4, 32T9641 x 8, 32T9642 x 2, 32T9643 x 4, 32T9644 x 4, 32T9645 x 2, 32T9646 x 4, 32T9679 x 8, 32T9680 x 8, 32T9681 x 8, 32T9682 x 4, 32T9683 x 8, 32T9684 x 4, 32T9685 x 4, 32T9686 x 4, 32T9687 x 4, 32T9688 x 4, 32T9726 x 2, 32T9727 x 16, 32T9728 x 4, 32T9729 x 2, 32T9730 x 8, 32T9731 x 4, 32T9732 x 4, 32T9733 x 8, 32T9734 x 4, 32T9735 x 4, 32T19793 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 62 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $512=2^{9}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [512, 400670]
Character table: Data not available.