Properties

Label 16T790
Order \(512\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $790$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,2)(3,4)(5,6)(7,8)(9,13,10,14)(11,16,12,15), (1,5)(2,6)(3,8)(4,7)(9,10)(15,16), (9,10)(11,12)(13,14)(15,16), (1,4,2,3)(5,7,6,8), (1,9)(2,10)(3,11,4,12)(5,13)(6,14)(7,16,8,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_4$ x 8, $C_2^2$ x 35
8:  $D_{4}$ x 24, $C_4\times C_2$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 36, $C_2^2:C_4$ x 48, $C_4\times C_2^2$ x 14, $C_2^4$
32:  $C_2^2 \wr C_2$ x 16, $C_2 \times (C_2^2:C_4)$ x 36, $C_2^2 \times D_4$ x 6, 32T34
64:  16T79 x 8, 16T105 x 4, 32T262 x 3
128:  16T241 x 2, 32T1149
256:  32T4207

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$ x 3

Degree 8: $C_2^2 \wr C_2$

Low degree siblings

16T790 x 23, 32T9670 x 24, 32T9671 x 24, 32T9672 x 12, 32T9673 x 12, 32T9674 x 24, 32T9675 x 24, 32T9676 x 24, 32T9677 x 12, 32T9678 x 24

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 62 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $512=2^{9}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [512, 400856]
Character table: Data not available.