Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $79$ | |
| Group : | $C_2^5.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,11,16,14)(2,12,15,13)(3,10,6,8)(4,9,5,7), (1,15)(2,16)(3,5)(4,6)(7,13)(8,14)(9,12)(10,11), (1,7,6,12)(2,8,5,11)(3,13,16,9)(4,14,15,10) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$ x 4, $C_2 \times (C_2^2:C_4)$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$ x 3, $C_2^2 \wr C_2$ x 4
Low degree siblings
16T79 x 31, 32T72 x 12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,10)( 8, 9)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,13)( 8,14)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,14)(12,13)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,12)( 8,11)( 9,13)(10,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,14)( 8,13)( 9,11)(10,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,10)( 8, 9)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7, 9)( 8,10)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,14)( 8,13)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,10)( 8, 9)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7, 9)( 8,10)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3,13, 4,14)( 5,11, 6,12)( 9,15,10,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 4,14)( 2, 8, 3,13)( 5,11,16, 9)( 6,12,15,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 6,12)( 2, 8, 5,11)( 3,13,16, 9)( 4,14,15,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7,16, 9)( 2, 8,15,10)( 3,13, 6,12)( 4,14, 5,11)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8, 2, 7)( 3,14, 4,13)( 5,12, 6,11)( 9,16,10,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8, 4,13)( 2, 7, 3,14)( 5,12,16,10)( 6,11,15, 9)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8, 6,11)( 2, 7, 5,12)( 3,14,16,10)( 4,13,15, 9)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8,16,10)( 2, 7,15, 9)( 3,14, 6,11)( 4,13, 5,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,15)( 2,16)( 3, 5)( 4, 6)( 7,10)( 8, 9)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,16)( 2,15)( 3, 6)( 4, 5)( 7, 9)( 8,10)(11,14)(12,13)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 60] |
| Character table: Data not available. |