Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $763$ | |
| Group : | $C_2^3:S_4.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4,2,3)(5,14,6,13)(7,16,8,15)(9,11,10,12), (1,15,10,6)(2,16,9,5)(3,14,11,8)(4,13,12,7), (1,5,16,2,6,15)(3,7,13,4,8,14)(9,10)(11,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ x 3 48: $S_4\times C_2$ x 3 96: $V_4^2:S_3$ 192: 12T100 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $S_4$
Degree 8: $S_4\times C_2$
Low degree siblings
16T763 x 5, 32T9366 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 5, 6)( 7, 8)( 9,15,10,16)(11,13,12,14)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $32$ | $3$ | $( 5, 9,15)( 6,10,16)( 7,12,14)( 8,11,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 6, 6, 2, 2 $ | $32$ | $6$ | $( 1, 2)( 3, 4)( 5, 9,15, 6,10,16)( 7,12,14, 8,11,13)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 12, 4 $ | $32$ | $12$ | $( 1, 3, 2, 4)( 5,11,16, 8,10,14, 6,12,15, 7, 9,13)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,13,10,14)(11,16,12,15)$ |
| $ 12, 4 $ | $32$ | $12$ | $( 1, 4, 2, 3)( 5,11,16, 7, 9,13, 6,12,15, 8,10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,16)(10,15)(11,14)(12,13)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 5, 9,15)( 2, 6,10,16)( 3, 7,12,14)( 4, 8,11,13)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 5, 9,16)( 2, 6,10,15)( 3, 7,12,13)( 4, 8,11,14)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,14,10,13)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 7, 9,13)( 2, 8,10,14)( 3, 6,12,15)( 4, 5,11,16)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 7, 9,14)( 2, 8,10,13)( 3, 6,12,16)( 4, 5,11,15)$ |
Group invariants
| Order: | $384=2^{7} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [384, 20095] |
| Character table: Data not available. |