Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $75$ | |
| Group : | $(C_2\times C_8):C_2^2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,11,2,12)(3,9,4,10)(5,7,6,8)(13,16,14,15), (1,13)(2,14)(3,4)(5,9)(6,10)(7,15)(8,16)(11,12), (1,13)(2,14)(3,11)(4,12)(5,9)(6,10)(7,8)(15,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $Z_8 : Z_8^\times$ x 2, $C_2 \times (C_2^2:C_4)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$, $Z_8 : Z_8^\times$ x 2
Low degree siblings
16T75 x 7, 32T65 x 2, 32T66 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 7)( 4, 8)( 5,13)( 6,14)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,16)( 4,15)( 5,13)( 6,14)( 7,12)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5,14)( 6,13)( 9,10)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5, 6)( 7,15)( 8,16)( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,15)( 4,16)( 5,14)( 6,13)( 7,11)( 8,12)( 9,10)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5,15, 6,16)( 7,13, 8,14)( 9,12,10,11)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3, 5, 8, 9,12,13,15)( 2, 4, 6, 7,10,11,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3,10,11)( 2, 4, 9,12)( 5,15,14, 7)( 6,16,13, 8)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3,13,15, 9,12, 5, 8)( 2, 4,14,16,10,11, 6, 7)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 2, 3)( 5,16, 6,15)( 7,14, 8,13)( 9,11,10,12)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 4, 5, 7, 9,11,13,16)( 2, 3, 6, 8,10,12,14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4,10,12)( 2, 3, 9,11)( 5,16,14, 8)( 6,15,13, 7)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 4,13,16, 9,11, 5, 7)( 2, 3,14,15,10,12, 6, 8)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3, 8,12,15)( 4, 7,11,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3,15,12, 8)( 4,16,11, 7)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6, 9,14)( 2, 5,10,13)( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 6, 9,14)( 2, 5,10,13)( 3,16,12, 7)( 4,15,11, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,14)( 6,13)( 7,15)( 8,16)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 99] |
| Character table: Data not available. |