Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $747$ | |
| Group : | $C_2\times C_2^3:S_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13)(2,14)(3,9)(4,10)(5,8)(6,7)(11,15)(12,16), (1,2)(3,14,9,15)(4,13,10,16)(5,7)(6,8)(11,12), (1,10,16,7)(2,9,15,8)(3,14,5,11)(4,13,6,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ x 3 48: $S_4\times C_2$ x 3 96: $V_4^2:S_3$ 192: $C_2^3:S_4$ x 2, 12T100 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $S_4$
Degree 8: $S_4\times C_2$, $C_2^3:S_4$ x 2
Low degree siblings
16T747 x 11, 32T9354 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 5, 8)( 6, 7)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 3, 5, 9, 8)( 4, 6,10, 7)(13,16)(14,15)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $32$ | $3$ | $( 3, 5,13)( 4, 6,14)( 7,15,10)( 8,16, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,10)(11,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 4)( 5,14)( 6,13)( 7,16)( 8,15)( 9,10)(11,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 2)( 3, 6, 9, 7)( 4, 5,10, 8)(11,12)(13,15)(14,16)$ |
| $ 6, 6, 2, 2 $ | $32$ | $6$ | $( 1, 2)( 3, 6,13, 4, 5,14)( 7,16,10, 8,15, 9)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 6, 6, 2, 2 $ | $32$ | $6$ | $( 1, 3, 5,12, 9, 8)( 2, 4, 6,11,10, 7)(13,16)(14,15)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 3, 5,13)( 2, 4, 6,14)( 7,15,11,10)( 8,16,12, 9)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 3, 5,16)( 2, 4, 6,15)( 7,14,11,10)( 8,13,12, 9)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 3,12, 9)( 2, 4,11,10)( 5,13, 8,16)( 6,14, 7,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 3)( 5,14)( 6,13)( 7,16)( 8,15)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 3)( 5,15)( 6,16)( 7,13)( 8,14)( 9,11)(10,12)$ |
| $ 6, 6, 2, 2 $ | $32$ | $6$ | $( 1, 4, 5,11, 9, 7)( 2, 3, 6,12,10, 8)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 4, 5,14)( 2, 3, 6,13)( 7,16,11, 9)( 8,15,12,10)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 4, 5,15)( 2, 3, 6,16)( 7,13,11, 9)( 8,14,12,10)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 4,12,10)( 2, 3,11, 9)( 5,14, 8,15)( 6,13, 7,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5, 7)( 6, 8)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5, 8)( 6, 7)(13,16)(14,15)$ |
Group invariants
| Order: | $384=2^{7} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [384, 20089] |
| Character table: Data not available. |