Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $732$ | |
| Group : | $C_2^3.Q_8.C_6$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,2,4)(5,12,15,7,9,14,6,11,16,8,10,13), (1,10,8)(2,9,7)(3,12,5)(4,11,6)(13,14)(15,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 12: $A_4$ 24: $A_4\times C_2$, $\SL(2,3)$ x 2 48: 16T59 96: 12T60 192: 24T293 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $A_4$
Degree 8: $\SL(2,3)$
Low degree siblings
16T732, 32T9339Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 6, 6, 1, 1, 1, 1 $ | $16$ | $6$ | $( 5, 9,15, 6,10,16)( 7,11,14, 8,12,13)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $16$ | $3$ | $( 5, 9,15)( 6,10,16)( 7,11,14)( 8,12,13)$ |
| $ 6, 6, 1, 1, 1, 1 $ | $16$ | $6$ | $( 5,15,10, 6,16, 9)( 7,14,12, 8,13,11)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $16$ | $3$ | $( 5,15, 9)( 6,16,10)( 7,14,11)( 8,13,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 6, 6, 2, 2 $ | $16$ | $6$ | $( 1, 2)( 3, 4)( 5, 9,15, 6,10,16)( 7,11,14, 8,12,13)$ |
| $ 3, 3, 3, 3, 2, 2 $ | $16$ | $6$ | $( 1, 2)( 3, 4)( 5, 9,15)( 6,10,16)( 7,11,14)( 8,12,13)$ |
| $ 6, 6, 2, 2 $ | $16$ | $6$ | $( 1, 2)( 3, 4)( 5,15,10, 6,16, 9)( 7,14,12, 8,13,11)$ |
| $ 3, 3, 3, 3, 2, 2 $ | $16$ | $6$ | $( 1, 2)( 3, 4)( 5,15, 9)( 6,16,10)( 7,14,11)( 8,13,12)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 12, 4 $ | $16$ | $12$ | $( 1, 3, 2, 4)( 5,11,15, 7,10,14, 6,12,16, 8, 9,13)$ |
| $ 12, 4 $ | $16$ | $12$ | $( 1, 3, 2, 4)( 5,11,15, 8, 9,13, 6,12,16, 7,10,14)$ |
| $ 12, 4 $ | $16$ | $12$ | $( 1, 3, 2, 4)( 5,13, 9, 7,15,11, 6,14,10, 8,16,12)$ |
| $ 12, 4 $ | $16$ | $12$ | $( 1, 3, 2, 4)( 5,13,10, 8,16,11, 6,14, 9, 7,15,12)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 12, 4 $ | $16$ | $12$ | $( 1, 4, 2, 3)( 5,11,15, 7,10,14, 6,12,16, 8, 9,13)$ |
| $ 12, 4 $ | $16$ | $12$ | $( 1, 4, 2, 3)( 5,11,15, 8, 9,13, 6,12,16, 7,10,14)$ |
| $ 12, 4 $ | $16$ | $12$ | $( 1, 4, 2, 3)( 5,13, 9, 7,15,11, 6,14,10, 8,16,12)$ |
| $ 12, 4 $ | $16$ | $12$ | $( 1, 4, 2, 3)( 5,13,10, 8,16,11, 6,14, 9, 7,15,12)$ |
| $ 8, 8 $ | $24$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,13,11,15,10,14,12,16)$ |
| $ 8, 8 $ | $24$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,13,12,16,10,14,11,15)$ |
| $ 8, 8 $ | $24$ | $8$ | $( 1, 5, 4, 8, 2, 6, 3, 7)( 9,13,11,15,10,14,12,16)$ |
| $ 8, 8 $ | $24$ | $8$ | $( 1, 5, 4, 8, 2, 6, 3, 7)( 9,13,12,16,10,14,11,15)$ |
Group invariants
| Order: | $384=2^{7} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [384, 615] |
| Character table: Data not available. |