Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $725$ | |
| Group : | $C_2^4.(C_4\times S_3)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,5,8,3,11,2,14,6,7,4,12)(9,15,10,16), (1,11,16,14)(2,12,15,13)(3,7,5,9)(4,8,6,10), (1,2)(3,5,15,4,6,16)(7,12,13,8,11,14)(9,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 6: $S_3$ 8: $C_4\times C_2$ 12: $D_{6}$ 24: $S_4$, $S_3 \times C_4$ 48: $S_4\times C_2$ 96: 12T53 192: $V_4^2:(S_3\times C_2)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $V_4^2:(S_3\times C_2)$
Low degree siblings
12T153 x 2, 12T155 x 2, 16T725, 24T720, 24T836, 24T860, 24T1136, 24T1142, 24T1145, 24T1146, 24T1265 x 2, 24T1266, 24T1267, 24T1274, 24T1275, 24T1276 x 2, 24T1277 x 2, 24T1278 x 2, 24T1279 x 2, 32T9333, 32T9454Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 7,10)( 8, 9)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 5,16)( 6,15)( 9,12)(10,11)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 5,16)( 6,15)( 7,10,13,11)( 8, 9,14,12)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $32$ | $3$ | $( 3, 6,15)( 4, 5,16)( 9,14,12)(10,13,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,14)(12,13)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 4)( 5,15)( 6,16)( 7, 8)( 9,11)(10,12)(13,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 2)( 3, 4)( 5,15)( 6,16)( 7, 9,13,12)( 8,10,14,11)$ |
| $ 6, 6, 2, 2 $ | $32$ | $6$ | $( 1, 2)( 3, 5,15, 4, 6,16)( 7, 8)( 9,13,12,10,14,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,10)( 8, 9)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,13)( 8,14)( 9,12)(10,11)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7,10,11,13)( 8, 9,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 4)( 2, 3)( 5,15)( 6,16)( 7, 9)( 8,10)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 3)( 5,15)( 6,16)( 7,14)( 8,13)( 9,11)(10,12)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 4, 6,16)( 2, 3, 5,15)( 7, 9,11,14)( 8,10,12,13)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 7, 2, 8)( 3,10, 4, 9)( 5,12, 6,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 7, 4, 9)( 2, 8, 3,10)( 5,12,15,13)( 6,11,16,14)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 7, 5,12)( 2, 8, 6,11)( 3,10,16,14)( 4, 9,15,13)$ |
| $ 12, 4 $ | $32$ | $12$ | $( 1, 7, 2, 8)( 3,10, 5,14,15,11, 4, 9, 6,13,16,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 2, 8)( 3,13, 4,14)( 5,12, 6,11)( 9,15,10,16)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 7, 4,14)( 2, 8, 3,13)( 5,12,15,10)( 6,11,16, 9)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 8, 2, 7)( 3, 9, 4,10)( 5,11, 6,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $24$ | $4$ | $( 1, 8, 4,10)( 2, 7, 3, 9)( 5,11,15,14)( 6,12,16,13)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 8, 5,11)( 2, 7, 6,12)( 3, 9,16,13)( 4,10,15,14)$ |
| $ 12, 4 $ | $32$ | $12$ | $( 1, 8, 2, 7)( 3, 9, 5,13,15,12, 4,10, 6,14,16,11)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 8, 2, 7)( 3,14, 4,13)( 5,11, 6,12)( 9,16,10,15)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 8, 4,13)( 2, 7, 3,14)( 5,11,15, 9)( 6,12,16,10)$ |
Group invariants
| Order: | $384=2^{7} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [384, 5566] |
| Character table: Data not available. |