Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $D_8$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,14,2,13)(3,8,4,7)(5,10,6,9)(11,16,12,15), (1,15,2,16)(3,5,4,6)(7,10,8,9)(11,14,12,13), (1,6)(2,5)(3,15)(4,16)(7,12)(8,11)(9,14)(10,13) | |
| $|\Aut(F/K)|$: | $16$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $C_2^3$, $Q_8$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5,16, 6,15)( 7,13, 8,14)( 9,12,10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,11)( 8,12)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 7, 2, 8)( 3,14, 4,13)( 5,11, 6,12)( 9,16,10,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,13, 6,14)( 7,15, 8,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5, 7, 6, 8)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,13, 2,14)( 3, 7, 4, 8)( 5, 9, 6,10)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3, 5, 4, 6)( 7,10, 8, 9)(11,14,12,13)$ |
Group invariants
| Order: | $16=2^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [16, 12] |
| Character table: |
2 4 4 3 4 4 3 3 3 3 3
1a 2a 4a 2b 2c 4b 4c 4d 4e 4f
2P 1a 1a 2a 1a 1a 2a 2a 2a 2a 2a
3P 1a 2a 4a 2b 2c 4b 4c 4d 4e 4f
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 -1 -1 -1 1 1 1
X.3 1 1 -1 -1 -1 1 1 -1 -1 1
X.4 1 1 -1 1 1 -1 1 -1 1 -1
X.5 1 1 -1 1 1 1 -1 1 -1 -1
X.6 1 1 1 -1 -1 -1 1 1 -1 -1
X.7 1 1 1 -1 -1 1 -1 -1 1 -1
X.8 1 1 1 1 1 -1 -1 -1 -1 1
X.9 2 -2 . 2 -2 . . . . .
X.10 2 -2 . -2 2 . . . . .
|