Show commands: Magma
Group invariants
| Abstract group: | $C_2^4.D_8$ |
| |
| Order: | $256=2^{8}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $5$ |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $686$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,8,2,7)(3,6,4,5)(9,11,10,12)(13,14)$, $(1,14,8,9,3,16,5,11)(2,13,7,10,4,15,6,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $D_{8}$, $QD_{16}$, $C_2^2:C_4$ $32$: $C_4\wr C_2$, $C_2^3 : C_4 $, 16T26 $64$: $((C_8 : C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T163 $128$: 16T330 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $D_{8}$
Low degree siblings
16T682 x 2, 16T686, 16T699 x 4, 16T703 x 2, 16T705 x 2, 32T3297 x 2, 32T3298, 32T3299, 32T3317 x 2, 32T3318 x 2, 32T3349 x 2, 32T3350 x 4, 32T3351 x 4, 32T3352 x 4, 32T3353 x 2, 32T3363 x 2, 32T3364 x 2, 32T3365, 32T3366 x 2, 32T3367, 32T3368, 32T3369, 32T3370 x 2, 32T3374 x 2, 32T7424, 32T7605Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| 2C | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| 2D | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| 2E | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| 2F | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 1, 2)( 3, 4)(13,14)(15,16)$ |
| 2G | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| 2H | $2^{2},1^{12}$ | $4$ | $2$ | $2$ | $(13,14)(15,16)$ |
| 2I | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)$ |
| 2J | $2^{8}$ | $16$ | $2$ | $8$ | $( 1,14)( 2,13)( 3,15)( 4,16)( 5,10)( 6, 9)( 7,12)( 8,11)$ |
| 4A1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,13,12,16)(10,14,11,15)$ |
| 4A-1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,16,12,13)(10,15,11,14)$ |
| 4B | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 6, 4, 8)( 2, 5, 3, 7)( 9,13,11,15)(10,14,12,16)$ |
| 4C | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,13, 2,14)( 3,16, 4,15)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| 4D | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1,15, 2,16)( 3,14, 4,13)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| 4E | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,12, 2,11)( 3, 9, 4,10)( 5,14, 6,13)( 7,16, 8,15)$ |
| 4F1 | $4^{3},2,1^{2}$ | $16$ | $4$ | $10$ | $( 1, 8, 2, 7)( 3, 6, 4, 5)( 9,11,10,12)(13,14)$ |
| 4F-1 | $4^{3},2,1^{2}$ | $16$ | $4$ | $10$ | $( 1, 7, 2, 8)( 3, 5, 4, 6)( 9,12,10,11)(13,14)$ |
| 4G1 | $4,2^{5},1^{2}$ | $16$ | $4$ | $8$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)(11,12)(13,16,14,15)$ |
| 4G-1 | $4,2^{5},1^{2}$ | $16$ | $4$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,10)(13,16,14,15)$ |
| 8A1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1,12, 5,16, 4, 9, 7,13)( 2,11, 6,15, 3,10, 8,14)$ |
| 8A-1 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1,11, 5,15, 3, 9, 8,13)( 2,12, 6,16, 4,10, 7,14)$ |
| 8A3 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1, 9, 6,14, 3,11, 7,16)( 2,10, 5,13, 4,12, 8,15)$ |
| 8A-3 | $8^{2}$ | $16$ | $8$ | $14$ | $( 1,10, 6,13, 4,11, 8,16)( 2, 9, 5,14, 3,12, 7,15)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A1 | 4A-1 | 4B | 4C | 4D | 4E | 4F1 | 4F-1 | 4G1 | 4G-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | ||
| Size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 16 | 8 | 8 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2D | 2D | 2C | 2F | 2F | 2A | 2G | 2G | 2H | 2H | 4A1 | 4A-1 | 4A-1 | 4A1 | |
| Type | ||||||||||||||||||||||||||
| 256.382.1a | R | |||||||||||||||||||||||||
| 256.382.1b | R | |||||||||||||||||||||||||
| 256.382.1c | R | |||||||||||||||||||||||||
| 256.382.1d | R | |||||||||||||||||||||||||
| 256.382.1e1 | C | |||||||||||||||||||||||||
| 256.382.1e2 | C | |||||||||||||||||||||||||
| 256.382.1f1 | C | |||||||||||||||||||||||||
| 256.382.1f2 | C | |||||||||||||||||||||||||
| 256.382.2a | R | |||||||||||||||||||||||||
| 256.382.2b | R | |||||||||||||||||||||||||
| 256.382.2c1 | R | |||||||||||||||||||||||||
| 256.382.2c2 | R | |||||||||||||||||||||||||
| 256.382.2d1 | C | |||||||||||||||||||||||||
| 256.382.2d2 | C | |||||||||||||||||||||||||
| 256.382.2e1 | C | |||||||||||||||||||||||||
| 256.382.2e2 | C | |||||||||||||||||||||||||
| 256.382.2f1 | C | |||||||||||||||||||||||||
| 256.382.2f2 | C | |||||||||||||||||||||||||
| 256.382.4a | R | |||||||||||||||||||||||||
| 256.382.4b | R | |||||||||||||||||||||||||
| 256.382.4c | R | |||||||||||||||||||||||||
| 256.382.4d | R | |||||||||||||||||||||||||
| 256.382.4e | R | |||||||||||||||||||||||||
| 256.382.8a | R | |||||||||||||||||||||||||
| 256.382.8b | R |
Regular extensions
Data not computed