Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $675$ | |
| Group : | $(C_2^3\times C_4).D_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $5$ | |
| Generators: | (1,8,2,7)(3,5,4,6)(9,11,10,12)(13,14)(15,16), (1,16,7,11,3,14,6,9,2,15,8,12,4,13,5,10) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $D_{8}$, $QD_{16}$, $C_2^2:C_4$ 32: $C_4\wr C_2$, $C_2^3 : C_4 $, 16T26 64: $((C_8 : C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T163 128: 16T330 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $D_{8}$
Low degree siblings
16T675 x 3, 32T3277 x 2, 32T3278 x 4, 32T5767 x 4, 32T7554 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 1, 1, 1, 1 $ | $8$ | $4$ | $( 5, 7, 6, 8)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 5, 7, 6, 8)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 4, 4, 4, 1, 1, 1, 1 $ | $8$ | $4$ | $( 5, 8, 6, 7)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 5, 8, 6, 7)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 2, 2 $ | $8$ | $4$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 2, 2, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 4, 4, 4, 2, 2 $ | $8$ | $4$ | $( 1, 2)( 3, 4)( 5, 8, 6, 7)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 2, 2, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 2)( 3, 4)( 5, 8, 6, 7)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,13,11,15,10,14,12,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,13,12,16,10,14,11,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 5, 4, 8, 2, 6, 3, 7)( 9,13,11,15,10,14,12,16)$ |
| $ 16 $ | $16$ | $16$ | $( 1, 9, 5,13, 3,12, 7,16, 2,10, 6,14, 4,11, 8,15)$ |
| $ 16 $ | $16$ | $16$ | $( 1, 9, 5,13, 4,11, 8,15, 2,10, 6,14, 3,12, 7,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15)( 6,16)( 7,13)( 8,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,15)( 6,16)( 7,13)( 8,14)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 16 $ | $16$ | $16$ | $( 1,11, 5,15, 4,10, 8,14, 2,12, 6,16, 3, 9, 7,13)$ |
| $ 16 $ | $16$ | $16$ | $( 1,11, 5,15, 3, 9, 7,13, 2,12, 6,16, 4,10, 8,14)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 384] |
| Character table: Data not available. |