Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $659$ | |
| Group : | $C_2.D_4^2.C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $5$ | |
| Generators: | (1,10,2,9)(3,11,4,12)(5,14,6,13)(7,15,8,16), (3,7)(4,8)(5,6)(11,12)(15,16), (1,15,2,16)(3,14,4,13)(5,11,6,12)(7,10,8,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ 128: $C_2 \wr C_2\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T659, 16T665 x 2, 16T696 x 2, 32T3217, 32T3218 x 4, 32T3219, 32T3220 x 4, 32T3221, 32T3241 x 2, 32T3242, 32T3243, 32T3344, 32T3345, 32T6289 x 4, 32T7363Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 9,13,10,14)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,15)(12,16)(13,14)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)( 9,13)(10,14)(11,12)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $16$ | $4$ | $( 3, 7)( 4, 8)( 5, 6)( 9,13,10,14)(11,16,12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 8)( 4, 7)( 5, 6)(11,16)(12,15)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 8)( 4, 7)( 5, 6)( 9,13)(10,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 8, 4, 4 $ | $16$ | $8$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,14,16,10,12,13,15)$ |
| $ 8, 4, 4 $ | $16$ | $8$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,14,15,10,11,13,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,11,13,15,10,12,14,16)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,12,13,16,10,11,14,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 3, 5, 7, 2, 4, 6, 8)( 9,15,14,11,10,16,13,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 2, 2 $ | $32$ | $4$ | $( 1, 9)( 2,10)( 3,11, 8,16)( 4,12, 7,15)( 5,13, 6,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,13, 6,14)( 7,16, 8,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 9, 5,13, 2,10, 6,14)( 3,12, 7,16, 4,11, 8,15)$ |
| $ 4, 4, 4, 2, 2 $ | $32$ | $4$ | $( 1,11, 5,16)( 2,12, 6,15)( 3, 9)( 4,10)( 7,14, 8,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5,16, 6,15)( 7,13, 8,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5,16)( 6,15)( 7,13)( 8,14)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,11, 6,15, 2,12, 5,16)( 3,10, 8,14, 4, 9, 7,13)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 6661] |
| Character table: Data not available. |