Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $657$ | |
| Group : | $C_2^3.C_2^4.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,2)(3,4)(9,11,10,12)(13,15,14,16), (1,3)(2,4)(5,8)(6,7)(9,13,10,14)(11,15,12,16), (9,10)(11,12)(13,14)(15,16), (1,6)(2,5)(3,8)(4,7)(11,12)(13,14), (1,10,2,9)(3,14)(4,13)(5,11)(6,12)(7,15,8,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $D_{4}$ x 12, $C_2^3$ x 15 16: $D_4\times C_2$ x 18, $C_2^4$ 32: $C_2^2 \wr C_2$ x 4, $C_2^2 \times D_4$ x 3 64: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T105 128: 16T245 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
16T636 x 4, 16T652 x 4, 16T657 x 3, 32T3110 x 4, 32T3111 x 2, 32T3112 x 2, 32T3113 x 4, 32T3114 x 2, 32T3115 x 2, 32T3116 x 2, 32T3185 x 2, 32T3186 x 2, 32T3187 x 4, 32T3188 x 2, 32T3189 x 2, 32T3190 x 2, 32T3209 x 2, 32T3210 x 2, 32T3211 x 2, 32T3212 x 2, 32T3213 x 2, 32T4769 x 4, 32T7442 x 2, 32T7470 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 9,11,10,12)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 5, 6)( 7, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 5, 6)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 6)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,13,10,14)(11,16,12,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,16)(10,15)(11,14)(12,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 2, 8)( 3, 5, 4, 6)( 9,15,10,16)(11,13,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 9)( 2,10)( 3,13)( 4,14)( 5,11)( 6,12)( 7,15)( 8,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 9, 2,10)( 3,13, 4,14)( 5,11, 6,12)( 7,15, 8,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 9, 5,11, 2,10, 6,12)( 3,13, 8,16, 4,14, 7,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 9)( 2,10)( 3,13, 4,14)( 5,12, 6,11)( 7,16)( 8,15)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 9, 5,12)( 2,10, 6,11)( 3,13, 7,16)( 4,14, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1,13)( 2,14)( 3, 9)( 4,10)( 5,15)( 6,16)( 7,11)( 8,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1,13, 2,14)( 3, 9, 4,10)( 5,15, 6,16)( 7,11, 8,12)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1,13, 6,16, 2,14, 5,15)( 3, 9, 7,11, 4,10, 8,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1,13, 2,14)( 3, 9)( 4,10)( 5,16)( 6,15)( 7,12, 8,11)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1,13, 5,16)( 2,14, 6,15)( 3, 9, 7,12)( 4,10, 8,11)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 26545] |
| Character table: Data not available. |