Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $62$ | |
| Group : | $A_4:C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,15,4,2,16,3)(5,6)(7,12,10,8,11,9)(13,14), (1,8,3,13)(2,7,4,14)(5,10,16,12)(6,9,15,11) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 6: $S_3$ 12: $C_3 : C_4$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $S_4$
Low degree siblings
12T27, 12T30, 24T51, 24T57Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $8$ | $3$ | $( 3, 5,15)( 4, 6,16)( 7,11,13)( 8,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 6, 6, 2, 2 $ | $8$ | $6$ | $( 1, 2)( 3, 6,15, 4, 5,16)( 7,12,13, 8,11,14)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,14)( 8,13)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 3)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 7, 5,12)( 2, 8, 6,11)( 3, 9,16,13)( 4,10,15,14)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 7, 2, 8)( 3,12, 4,11)( 5,14, 6,13)( 9,16,10,15)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 8, 5,11)( 2, 7, 6,12)( 3,10,16,14)( 4, 9,15,13)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 8, 2, 7)( 3,11, 4,12)( 5,13, 6,14)( 9,15,10,16)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 30] |
| Character table: |
2 4 1 4 1 4 4 3 3 3 3
3 1 1 1 1 . . . . . .
1a 3a 2a 6a 2b 2c 4a 4b 4c 4d
2P 1a 3a 1a 3a 1a 1a 2b 2a 2b 2a
3P 1a 1a 2a 2a 2b 2c 4c 4d 4a 4b
5P 1a 3a 2a 6a 2b 2c 4a 4b 4c 4d
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 -1 -1 -1 -1
X.3 1 1 -1 -1 -1 1 A A -A -A
X.4 1 1 -1 -1 -1 1 -A -A A A
X.5 2 -1 -2 1 -2 2 . . . .
X.6 2 -1 2 -1 2 2 . . . .
X.7 3 . 3 . -1 -1 -1 1 -1 1
X.8 3 . 3 . -1 -1 1 -1 1 -1
X.9 3 . -3 . 1 -1 A -A -A A
X.10 3 . -3 . 1 -1 -A A A -A
A = -E(4)
= -Sqrt(-1) = -i
|