Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $610$ | |
| Group : | $C_2^2.C_2^5.C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,8,12,16,2,7,11,15)(3,5,9,13,4,6,10,14), (1,7,4,5,2,8,3,6)(9,13,11,15,10,14,12,16), (1,12,2,11)(3,9,4,10)(5,8,6,7)(13,16,14,15) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$ x 4, $C_2 \times (C_2^2:C_4)$ x 3 64: $(((C_4 \times C_2): C_2):C_2):C_2$, 16T79, 16T146 128: 32T1151 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$
Low degree siblings
16T503 x 4, 16T610 x 7, 32T2505 x 4, 32T2506 x 4, 32T2507 x 2, 32T2508 x 4, 32T2509 x 2, 32T2990 x 4, 32T2991 x 4, 32T2992 x 4, 32T2993 x 4, 32T2994 x 4, 32T2995 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5,15)( 6,16)( 7,14)( 8,13)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 5,15, 6,16)( 7,14, 8,13)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5,15)( 6,16)( 7,14)( 8,13)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5,15, 6,16)( 7,14, 8,13)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,15)( 6,16)( 7,14)( 8,13)( 9,10)(11,12)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,11,10,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5,13, 6,14)( 7,15, 8,16)( 9,11,10,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,12,10,11)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,13, 6,14)( 7,15, 8,16)( 9,12,10,11)$ |
| $ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 4, 2, 3)( 5,13)( 6,14)( 7,15)( 8,16)( 9,12,10,11)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 4, 2, 3)( 5,13, 6,14)( 7,15, 8,16)( 9,12,10,11)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,15,11,14,10,16,12,13)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,15,12,13,10,16,11,14)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 5, 4, 8, 2, 6, 3, 7)( 9,15,12,13,10,16,11,14)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,11,14, 2, 6,12,13)( 3, 7,10,16, 4, 8, 9,15)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 5,11,14)( 2, 6,12,13)( 3, 7,10,16)( 4, 8, 9,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7, 3, 6, 2, 8, 4, 5)( 9,13,11,15,10,14,12,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 7, 3, 6, 2, 8, 4, 5)( 9,13,12,16,10,14,11,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7, 4, 5, 2, 8, 3, 6)( 9,13,12,16,10,14,11,15)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 7,11,15, 2, 8,12,16)( 3, 6,10,14, 4, 5, 9,13)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 7,11,15)( 2, 8,12,16)( 3, 6,10,14)( 4, 5, 9,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,15)( 6,16)( 7,14)( 8,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5,13)( 6,14)( 7,15)( 8,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5,13, 6,14)( 7,15, 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5,13)( 6,14)( 7,15)( 8,16)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 5753] |
| Character table: Data not available. |