Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $61$ | |
| Group : | $C_2\times S_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,12)(3,13)(4,14)(5,7)(6,8)(9,15)(10,16), (1,9,16,12,4,13)(2,10,15,11,3,14)(5,8)(6,7), (1,12)(2,11)(3,14,6,10,15,7)(4,13,5,9,16,8) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $S_4$, $S_4\times C_2$ x 2
Low degree siblings
6T11 x 2, 8T24 x 2, 12T21, 12T22, 12T23 x 2, 12T24 x 2, 24T46, 24T47, 24T48 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $8$ | $3$ | $( 3, 6,15)( 4, 5,16)( 7,14,10)( 8,13, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,10)(11,12)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3, 5,15)( 2, 4, 6,16)( 7,13,11, 9)( 8,14,12,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 7,16,10)( 2, 8,15, 9)( 3,12, 6,13)( 4,11, 5,14)$ |
| $ 6, 6, 2, 2 $ | $8$ | $6$ | $( 1, 8,16,12, 5,13)( 2, 7,15,11, 6,14)( 3,10)( 4, 9)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 8)( 2, 7)( 3,14)( 4,13)( 5,12)( 6,11)( 9,16)(10,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,16)(14,15)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 48] |
| Character table: |
2 4 1 3 3 4 3 3 1 4 4
3 1 1 . . . . . 1 . 1
1a 3a 2a 4a 2b 2c 4b 6a 2d 2e
2P 1a 3a 1a 2b 1a 1a 2b 3a 1a 1a
3P 1a 1a 2a 4a 2b 2c 4b 2e 2d 2e
5P 1a 3a 2a 4a 2b 2c 4b 6a 2d 2e
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 -1 1 1 1
X.3 1 1 -1 -1 1 1 1 -1 -1 -1
X.4 1 1 1 1 1 -1 -1 -1 -1 -1
X.5 2 -1 . . 2 . . -1 2 2
X.6 2 -1 . . 2 . . 1 -2 -2
X.7 3 . -1 1 -1 -1 1 . -1 3
X.8 3 . -1 1 -1 1 -1 . 1 -3
X.9 3 . 1 -1 -1 -1 1 . 1 -3
X.10 3 . 1 -1 -1 1 -1 . -1 3
|