Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $600$ | |
| Group : | $(C_2^2\times D_4).C_2^3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,7,3,6)(2,8,4,5)(9,15,12,13)(10,16,11,14), (1,15)(2,16)(3,14)(4,13)(5,11,6,12)(7,10,8,9), (9,10)(11,12)(13,14)(15,16), (1,15)(2,16)(3,14)(4,13)(5,6)(11,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $D_{4}$ x 12, $C_2^3$ x 15 16: $D_4\times C_2$ x 18, $Q_8:C_2$ x 4, $C_2^4$ 32: $C_2^2 \wr C_2$ x 4, $C_2^3 : D_4 $ x 2, $C_2 \times (C_4\times C_2):C_2$ x 2, $C_2^2 \times D_4$ x 3 64: 16T73, 16T105, 16T115 x 4, 16T117 128: 32T1074 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$ x 3
Degree 8: $C_2^2 \wr C_2$
Low degree siblings
16T579 x 4, 16T600 x 7, 32T2846 x 2, 32T2847 x 2, 32T2848 x 8, 32T2849 x 4, 32T2850 x 2, 32T2945 x 4, 32T2946 x 4, 32T2947 x 4, 32T2948 x 4, 32T2949 x 4, 32T2950 x 4, 32T7246 x 2, 32T7271 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 5,11)( 6,12)( 7, 9)( 8,10)(13,14)(15,16)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $4$ | $( 5,11, 6,12)( 7, 9, 8,10)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,14)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 3, 4)( 5, 7, 6, 8)( 9,12,10,11)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 3, 4)( 5, 8, 6, 7)( 9,11,10,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 4)( 5, 9, 6,10)( 7,12, 8,11)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 2)( 3, 4)( 5,11, 6,12)( 7, 9, 8,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 3)( 2, 4)( 5, 9)( 6,10)( 7,11)( 8,12)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3)( 2, 4)( 5, 9, 6,10)( 7,11, 8,12)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,11, 6,12)( 7,10, 8, 9)(13,15,14,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,11)( 6,12)( 7,10)( 8, 9)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,16)(10,15)(11,14)(12,13)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,16,10,15)(11,14,12,13)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,13,12, 2, 6,14,11)( 3, 7,15,10, 4, 8,16, 9)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,13,11, 2, 6,14,12)( 3, 7,15, 9, 4, 8,16,10)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 3, 8)( 2, 6, 4, 7)( 9,13,12,15)(10,14,11,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 3, 8)( 2, 6, 4, 7)( 9,14,12,16)(10,13,11,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,13,11,16)(10,14,12,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,14,11,15)(10,13,12,16)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,15,10, 2, 6,16, 9)( 3, 8,13,11, 4, 7,14,12)$ |
| $ 8, 8 $ | $16$ | $8$ | $( 1, 5,15, 9, 2, 6,16,10)( 3, 8,13,12, 4, 7,14,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,11)( 6,12)( 7, 9)( 8,10)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,11, 6,12)( 7, 9, 8,10)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,12, 6,11)( 7,10, 8, 9)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5, 9)( 6,10)( 7,12)( 8,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5, 9, 6,10)( 7,12, 8,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,10)( 6, 9)( 7,11)( 8,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,15)( 2,16)( 3,13)( 4,14)( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3,13, 4,14)( 5, 9, 6,10)( 7,11, 8,12)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3,13, 4,14)( 5,10, 6, 9)( 7,12, 8,11)$ |
Group invariants
| Order: | $256=2^{8}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [256, 16986] |
| Character table: Data not available. |