Show commands:
Magma
magma: G := TransitiveGroup(16, 60);
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $60$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\SL(2,3):C_2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,14,5,11,16,8,2,13,6,12,15,7)(3,10,4,9), (1,13)(2,14)(3,8)(4,7)(5,10)(6,9)(11,15)(12,16) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $12$: $A_4$ $24$: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $A_4$
Degree 8: $A_4\times C_2$
Low degree siblings
24T21Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 3, 3, 3, 3, 1, 1, 1, 1 $ | $4$ | $3$ | $( 3, 6,15)( 4, 5,16)( 7,14, 9)( 8,13,10)$ |
$ 3, 3, 3, 3, 1, 1, 1, 1 $ | $4$ | $3$ | $( 3,15, 6)( 4,16, 5)( 7, 9,14)( 8,10,13)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
$ 6, 6, 2, 2 $ | $4$ | $6$ | $( 1, 2)( 3, 5,15, 4, 6,16)( 7,13, 9, 8,14,10)(11,12)$ |
$ 6, 6, 2, 2 $ | $4$ | $6$ | $( 1, 2)( 3,16, 6, 4,15, 5)( 7,10,14, 8, 9,13)(11,12)$ |
$ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3, 2, 4)( 5,16, 6,15)( 7,14, 8,13)( 9,12,10,11)$ |
$ 12, 4 $ | $4$ | $12$ | $( 1, 7,15,12, 6,13, 2, 8,16,11, 5,14)( 3, 9, 4,10)$ |
$ 12, 4 $ | $4$ | $12$ | $( 1, 7, 4,11, 5,10, 2, 8, 3,12, 6, 9)(13,16,14,15)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 7)( 2, 8)( 3,13)( 4,14)( 5,11)( 6,12)( 9,15)(10,16)$ |
$ 12, 4 $ | $4$ | $12$ | $( 1, 8,15,11, 6,14, 2, 7,16,12, 5,13)( 3,10, 4, 9)$ |
$ 12, 4 $ | $4$ | $12$ | $( 1, 8, 4,12, 5, 9, 2, 7, 3,11, 6,10)(13,15,14,16)$ |
$ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5, 8, 6, 7)(13,15,14,16)$ |
$ 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,12, 2,11)( 3,10, 4, 9)( 5, 7, 6, 8)(13,16,14,15)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $48=2^{4} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 48.33 | magma: IdentifyGroup(G);
|
Character table: |
2 4 2 2 4 2 2 3 2 2 3 2 2 4 4 3 1 1 1 1 1 1 . 1 1 . 1 1 1 1 1a 3a 3b 2a 6a 6b 4a 12a 12b 2b 12c 12d 4b 4c 2P 1a 3b 3a 1a 3b 3a 2a 6a 6b 1a 6a 6b 2a 2a 3P 1a 1a 1a 2a 2a 2a 4a 4c 4b 2b 4b 4c 4c 4b 5P 1a 3b 3a 2a 6b 6a 4a 12d 12c 2b 12b 12a 4b 4c 7P 1a 3a 3b 2a 6a 6b 4a 12c 12d 2b 12a 12b 4c 4b 11P 1a 3b 3a 2a 6b 6a 4a 12b 12a 2b 12d 12c 4c 4b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 X.3 1 A /A 1 A /A 1 -/A -A -1 -/A -A -1 -1 X.4 1 /A A 1 /A A 1 -A -/A -1 -A -/A -1 -1 X.5 1 A /A 1 A /A 1 /A A 1 /A A 1 1 X.6 1 /A A 1 /A A 1 A /A 1 A /A 1 1 X.7 2 -1 -1 -2 1 1 . B -B . -B B D -D X.8 2 -1 -1 -2 1 1 . -B B . B -B -D D X.9 2 -/A -A -2 /A A . C /C . -C -/C D -D X.10 2 -/A -A -2 /A A . -C -/C . C /C -D D X.11 2 -A -/A -2 A /A . -/C -C . /C C D -D X.12 2 -A -/A -2 A /A . /C C . -/C -C -D D X.13 3 . . 3 . . -1 . . -1 . . 3 3 X.14 3 . . 3 . . -1 . . 1 . . -3 -3 A = E(3)^2 = (-1-Sqrt(-3))/2 = -1-b3 B = -E(4) = -Sqrt(-1) = -i C = -E(12)^11 D = 2*E(4) = 2*Sqrt(-1) = 2i |
magma: CharacterTable(G);