Show commands:
Magma
magma: G := TransitiveGroup(16, 60);
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $60$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\SL(2,3):C_2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,14,5,11,16,8,2,13,6,12,15,7)(3,10,4,9), (1,13)(2,14)(3,8)(4,7)(5,10)(6,9)(11,15)(12,16) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $12$: $A_4$ $24$: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $A_4$
Degree 8: $A_4\times C_2$
Low degree siblings
24T21Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{8}$ | $6$ | $2$ | $8$ | $( 1,13)( 2,14)( 3, 8)( 4, 7)( 5,10)( 6, 9)(11,15)(12,16)$ |
3A1 | $3^{4},1^{4}$ | $4$ | $3$ | $8$ | $( 3, 6,15)( 4, 5,16)( 7,14, 9)( 8,13,10)$ |
3A-1 | $3^{4},1^{4}$ | $4$ | $3$ | $8$ | $( 3,15, 6)( 4,16, 5)( 7, 9,14)( 8,10,13)$ |
4A1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5, 8, 6, 7)(13,15,14,16)$ |
4A-1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1,12, 2,11)( 3,10, 4, 9)( 5, 7, 6, 8)(13,16,14,15)$ |
4B | $4^{4}$ | $6$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3,15, 4,16)( 7,11, 8,12)( 9,14,10,13)$ |
6A1 | $6^{2},2^{2}$ | $4$ | $6$ | $12$ | $( 1, 4, 5, 2, 3, 6)( 7,11,10, 8,12, 9)(13,14)(15,16)$ |
6A-1 | $6^{2},2^{2}$ | $4$ | $6$ | $12$ | $( 1, 6, 3, 2, 5, 4)( 7, 9,12, 8,10,11)(13,14)(15,16)$ |
12A1 | $12,4$ | $4$ | $12$ | $14$ | $( 1, 9,16,11, 4,13, 2,10,15,12, 3,14)( 5, 7, 6, 8)$ |
12A-1 | $12,4$ | $4$ | $12$ | $14$ | $( 1,10,16,12, 4,14, 2, 9,15,11, 3,13)( 5, 8, 6, 7)$ |
12A5 | $12,4$ | $4$ | $12$ | $14$ | $( 1,14, 3,12,15,10, 2,13, 4,11,16, 9)( 5, 8, 6, 7)$ |
12A-5 | $12,4$ | $4$ | $12$ | $14$ | $( 1,13, 3,11,15, 9, 2,14, 4,12,16,10)( 5, 7, 6, 8)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Group invariants
Order: | $48=2^{4} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 48.33 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A1 | 3A-1 | 4A1 | 4A-1 | 4B | 6A1 | 6A-1 | 12A1 | 12A-1 | 12A5 | 12A-5 | ||
Size | 1 | 1 | 6 | 4 | 4 | 1 | 1 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 3A-1 | 3A1 | 2A | 2A | 2A | 3A1 | 3A-1 | 6A1 | 6A1 | 6A-1 | 6A-1 | |
3 P | 1A | 2A | 2B | 1A | 1A | 4A-1 | 4A1 | 4B | 2A | 2A | 4A1 | 4A-1 | 4A-1 | 4A1 | |
Type | |||||||||||||||
48.33.1a | R | ||||||||||||||
48.33.1b | R | ||||||||||||||
48.33.1c1 | C | ||||||||||||||
48.33.1c2 | C | ||||||||||||||
48.33.1d1 | C | ||||||||||||||
48.33.1d2 | C | ||||||||||||||
48.33.2a1 | C | ||||||||||||||
48.33.2a2 | C | ||||||||||||||
48.33.2b1 | C | ||||||||||||||
48.33.2b2 | C | ||||||||||||||
48.33.2b3 | C | ||||||||||||||
48.33.2b4 | C | ||||||||||||||
48.33.3a | R | ||||||||||||||
48.33.3b | R |
magma: CharacterTable(G);